Élément de Warburg

De testwiki
Version datée du 2 juin 2023 à 08:58 par imported>Criric (voir homonymes)
(diff) ← Version précédente | Version actuelle (diff) | Version suivante → (diff)
Aller à la navigation Aller à la recherche

Modèle:Orphelin Modèle:Voir homonymes L'élément de Warburg est le composant permettant de modéliser le processus de diffusion en spectroscopie d'impédance électrochimique. Il porte le nom du physicien allemand Emil Warburg.

On rencontre souvent ce type d'éléments à l'interface entre une électrode et un électrolyte, interface modélisée par un circuit de Randles. Son symbole dans les schémas électriques correspond à la lettre W.

Il s'agit d'un élément à phase constante de constante de phase égale à 45°[1].

Origine

Lorsque le potentiel d'oxydoréduction est appliqué suffisamment longtemps pour diminuer la concentration des espèces présentes à proximité de l'électrode, il se crée une Modèle:Lien. Alors que le même potentiel est appliqué, le courant diminue avec la concentration des espèces, conduisant à une augmentation de l'impédance : cette augmentation correspond à l'impédance de Warburg[2].

On retrouve également ce type d'impédance si on se place dans le cas d'électrodes poreuses. En faisant l'hypothèse que la surface de l'électrode comporte des pores cylindriques semi-infinies, il est possible de modéliser l'interface entre l'électrode et l'électrolyte par un modèle de lignes de transmission constituées du même motif RC répété en série. On peut d'ailleurs montrer que lorsque ce motif est répété à l'infini, l'impédance du schéma équivalent se ramène à celle d'une impédance de Warburg[3].

Diffusion linéaire et semi-infinie

L'expression de l'impédance de Warburg lorsqu'on se place dans l'hypothèse d'une diffusion linéaire semi-infinie (c'est-à-dire où la diffusion se fait sans limitation selon une dimension, comme dans le cas d'une électrode planaire suffisamment grande)[4] est donnée ci-dessous :

ZW=AWω+AWjω
|ZW|=2AWω

Diffusion finie

Lorsque l'épaisseur de la couche de diffusion est connue, deux types d'impédance de Warburg peuvent exister : l'impédance de Warburg transmissive et l'impédance de Warburg réfléchissante, aussi appelées "Short" et "Open" respectivement.

Impédance de Warburg transmissive WS

Dans le cas d'une impédance transmissive, l'expression de l'impédance est définie ainsi :

ZWS=AWjωtanh(δDjω)

δ est l'épaisseur de la couche de diffusion et D le coefficient de diffusion

Impédance de Warburg réfléchissante WO

Dans le cas d'une impédance réfléchissante, l'expression de l'impédance est définie ainsi :

ZWO=AWjωcoth(δDjω)


Notes et références

Modèle:Références

Modèle:Portail