Identité hypergéométrique

De testwiki
Version datée du 25 août 2024 à 18:25 par imported>Pautard (à la suite de l'ouvrage)
(diff) ← Version précédente | Version actuelle (diff) | Version suivante → (diff)
Aller à la navigation Aller à la recherche

Une identité hypergéométrique est un résultat sur des sommes de termes d'une série hypergéométrique. De telles identités apparaissent fréquemment dans des problèmes de combinatoire et d'analyse d'algorithme. Les premières identités ont été trouvées à la main par des mathématiciens comme Carl Friedrich Gauss ou Ernst Kummer. Maintenant, l'objectif est d'obtenir des algorithmes qui automatisent les démonstrations de ces égalités.

La liste des identités hypergéométriques est parfois appelée liste de Bailey à la suite de l'ouvrage de Modèle:Lien[1].

Une technique de certification automatique de ces identités utilise des couples de fonctions appelés paires de Wilf-Zeilberger[2]Modèle:,[3]; un exemple d’identité hypergéométrique obtenue par cette méthode est :

k=0(1)k(nk)(2kk)4nk=(2nn).

Automatisation de la preuve

La preuve automatisée se fait en deux étapes :

  • trouver une expression simple de la somme hypergéométrique, dans le meilleur des cas une forme close ;
  • montrer rigoureusement (par des suites de transformations élémentaires) que cette expression est bien égale à la somme initiale.

Pour chaque type de somme hypergéométrique, il existe de nombreuses méthodes pour trouver une expression simple. Certaines de ces méthodes offrent démontrent l'égalité. On peut citer :

Les méthodes employées font souvent appel à des résultats du calcul formel.

Exemples d'identités hypergéométriques

Modèle:...

Bibliographie

  • Modèle:Ouvrage. Plus particulièrement, la section 5.5, intitulée Fonctions hypergéométriques.

Références

Modèle:Traduction/Référence Modèle:Références

Voir aussi

Article connexe

Théorème hypergéométrique de Gauss

Liens externes

Modèle:Portail