Hyperoctaèdre

De testwiki
Version datée du 10 janvier 2025 à 10:59 par imported>JeanCASPAR (Liens externes)
(diff) ← Version précédente | Version actuelle (diff) | Version suivante → (diff)
Aller à la navigation Aller à la recherche
Diagramme de Schlegel de l'hexadécachore, hyperoctaèdre en dimension 4.

Un hyperoctaèdre est, en géométrie, un polytope régulier convexe, généralisation de l'octaèdre en dimension quelconque. Un hyperoctaèdre de dimension n est également parfois nommé polytope croisé, n-orthoplexe ou cocube.

Définition

Un hyperoctaèdre est l'enveloppe convexe des points formés par toutes les permutations des coordonnées (±1, 0, 0, …, 0).

Exemples

En dimension 1, l'hyperoctaèdre est simplement le segment de droite [-1, +1] ; en dimension 2, il s'agit d'un carré de sommets {(1, 0), (-1, 0), (0, 1), (0, -1)}. En dimension 3, il s'agit de l'octaèdre. En dimension 4, il s'agit de l'hexadécachore.

Propriétés

L'hyperoctaèdre de dimension n possède 2n sommets et 2n facettes (de dimension n-1), lesquelles sont des n-1 simplexes. Les figures de sommet sont toutes des n-1 hyperoctaèdres. Son symbole de Schläfli est {3,3,…,3,4}, avec n-1 chiffres.

De façon générale, le nombre de composants de dimension k d'un hyperoctaèdre de dimension n est donné par : 2k+1(nk+1). Son volume est 2nn!..

L'hyperoctaèdre est le polytope dual de l'hypercube. Avec ce dernier et les simplexes, il forme l'une des trois familles de polytopes réguliers.

Annexes

Liens internes

Liens externes

Modèle:Palette Modèle:Portail