Bromure de cétyltriméthylammonium

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Infobox Chimie Le bromure de cétyltriméthylammonium, ou Modèle:Abréviation, est un composé organique de formule chimique Modèle:Fchim. Il se présente sous la forme d'une poudre blanche utilisée comme tensioactif. Il est constitué par une longue chaîne aliphatique apolaire en C16 contenant 16 atomes de carbone saturés (chaine cétylique, ou hexadécane) attachée à un groupement triméthyl ammonium quaternaire chargé positivement. Il forme des micelles stables dans l'eau. Il est largement employé dans la production de nanoparticules d'or (sphères, bâtonnets, bipyramides...), de nanoparticules de silice mésoporeuse (MCM-41 par exemple) et d'après-shampooings. Le cation hexadécyltriméthylammonium Modèle:Nobr est un antiseptique efficace contre les bactéries et les champignons.

C'est l'un des ingrédients du Modèle:Lien[1]. C'est également le principal ingrédient de solutions tampons utilisées pour l'extraction de l'ADN[2]. Le Modèle:Lien et le stéarate de cétyltriméthylammonium, qui lui sont apparentés, peuvent être également utilisés comme antiseptiques ainsi que dans les shampooings et les cosmétiques. Le CTAB est cependant une substance assez chère qui n'est employée que dans des cosmétiques haut de gamme.

Comme la plupart des tensioactifs, le bromure de cétyltriméthylammonium forme des micelles en solution aqueuse. À Modèle:Unité (Modèle:Tmp), il forme des micelles ayant un Modèle:Lien compris entre 75 Modèle:Nobr selon le mode de détermination, la moyenne étant de l'ordre de 95, et un degré d'ionisation Modèle:Nobr selon que la concentratien est basse ou haute[3].

Applications

Biologie et médecine

Le bromure de cétyltriméthylammonium est un tensioactif très utilisé pour l'extraction de l'ADN afin de dissoudre la membrane plasmique des cellules et de provoquer leur lyse. La séparation fonctionne également avec les tissus riches en polysaccharides[2] : le CTAB se lie à ces derniers lorsque leur concentration est élevée, ce qui les élimine de la solution.

Les membranes cellulaires sont essentiellement constituées d'acides gras, qui sont amphiphiles, de sorte que des détergents sont souvent utilisés pour les dissoudre en interagissant à la fois avec leur groupe hydrophile et leur domaine hydrophobe. Le bromure de cétyltriméthylammonium est apprécié en biologie moléculaire et en biochimie parce qu'il préserve l'intégrité de l'ADN précipité au cours de l'opération[4]. En particulier, la charge positive du cation cétyltriméthylammonium dénature les glycoprotéines et les polysaccharides cellulaires avant qu'ils n'interfèrent avec le processus d'extraction de l'ADN[2].

Le bromure de cétyltriméthylammonium présente également un intérêt comme anticancéreux favorisant l'apoptose des cellules de cancers des voies aérodigestives supérieures[5].

Production de nanoparticules

Les tensioactifs jouent un rôle clé dans la production de nanoparticules en s'adsorbant à la surface des nanoparticules en formation, ce qui réduit leur énergie de surface[6]. Ils aident également à prévenir l'agrégation, par exemple à travers des Modèle:Lien.

Les nanoparticules d'or font l'objet de recherches en raison de leurs propriétés particulières, qui peuvent être mises à profit dans les domaines de la catalyse, l'optique, l'électronique, les appareils de détection et de mesure, et la médecine[7]. Le contrôle de la forme et de la taille de ces nanoparticules est important pour ajuster leurs propriétés, et le bromure de cétyltriméthylammonium est largement utilisé précisément pour contrôler la morphologie des nanoparticules. On pense qu'il agit en se liant aux facettes des cristaux en formation.

Une partie de cet effet provient de la réaction du CTAB avec d'autres réactifs au cours du processus de fabrication. Par exemple, lors de la synthèse auqueuse de nanoparticules d'or, l'acide chloraurique Modèle:Fchim peut réagir avec le CTAB pour donner un complexe Modèle:Nobr[8]Modèle:,[9]. Ce complexe aurique réagit ensuite avec de l'acide ascorbique pour donner de l'acide chlorhydrique, un radical d'acide ascorbique et un complexe Modèle:Nobr. Ces deux dernières espèces réagissent spontanément pour produire des nanoparticules métalliques AuModèle:Exp et d'autres sous-produits. La substitution des anions chlorure ClModèle:Exp par des anions bromure BrModèle:Exp sur les centres Au(Modèle:III) se produit de manière simultanée ou alternative. La cinétique de la formation des nanoparticules est influencée par la complexation avec le cation ammonium et la spéciation du précurseur Au(Modèle:III), qui influencent par conséquent la taille, la forme et la distribution des formes et des tailles des particules ainsi formées.

Le bromure de cétyltriméthylammonium a été utilisé pour la publication du premier matériau mésoporeux ordonné[10]. Les solides microporeux, dont les pores ont un diamètre inférieur à Modèle:Unité/2, et les solides mésoporeux, dont les pores ont un diamètre compris entre Modèle:Unité/2, se sont avérés d'une grande utilisé comme catalyseurs et matériaux d'adsorption en raison de leur surface spécifique élevée. Les zéolithes sont des matériaux microporeux typiques dont les pores sont cependant trop petits pour permettre une grande variété d'applications. La silice mésoporeuse est un matériau mésoporeux bien connu, mais elle est fréquemment amorphe ou paracristalline, avec des pores irrégulièrement disposés dont le diamètre présente une dispersion importante. Le besoin de disposer de matériaux mésoporeux très ordonnés avec une bonne cristallinité à moyenne échelle a favorisé l'utilisation de tensioactifs avec gels d'aluminosilicates, par exemple pour former des matériaux contenant des réseaux de canaux uniformes de dimension réglable de Modèle:Unité/2 en fonction du tensioactif, des réactifs auxiliaires et des conditions de réaction. On pense que la formation de ces matériaux ordonnés repose sur la formation de parois inorganiques entre micelles disposées régulièrement. Le bromure de cétyltriméthylammonium tend à former des micelles organisées en réseau hexagonal bidimensionnel ; le précurseur de silice s'hydrolyse entre les micelles et remplit les espaces avec du dioxyde de silicium. La matrice organique est ensuite éliminée par calcination, laissant une silice mésoporeuse ordonnée.

Notes et références

Modèle:Références

Modèle:Palette Modèle:Portail