Ce fichier provient de Wikimedia Commons et peut être utilisé par d'autres projets.
Sa description sur sa page de description est affichée ci-dessous.
Description
Very hastily drawn image of the fourth Mycielski graph. Mycielski proved in 1955 that for every there is a graph with chromatic number k that contains no triangle subgraphs, that is, whose maximal clique size is just 2. (This was also proved by A. A. Zykov, Mat. Zb. 24, (1949), 2, 163-183 (in Russian) and by "Blanche Descartes" (W. T. Tutte) Amer. Math. Monthly 61, (1954) p. 352.) The chromatic number of this graph is 4.
A simple construction of triangle-free graphs of any chromatic number is this. Start with a -chromatic graph G with no triangle. Take copies of G. Form all sets consisting of 1 node from each copy. Connect the nodes in each of these sets to a new node. The resulting graph is triangle-free and -chromatic.
If you can make the image look better, by all means do so.
Conditions d’utilisation
Public domainPublic domainfalsefalse
Cette œuvre a été placée dans le domaine public par son auteur, Bkell. Ceci s’applique dans le monde entier.
Dans certains pays, ceci peut ne pas être possible ; dans ce cas : Bkell accorde à toute personne le droit d’utiliser cette œuvre dans n’importe quel but, sans aucune condition, sauf celles requises par la loi.
Very hastily drawn image of the fourth Mycielski graph. Mycielski proved in 1955 that for every <math>k\ge1</math> there is a graph with chromatic number ''k'' that contains no triangle subgraphs, that is, whose maximal clique size is just 2. The chromati
Légendes
Ajoutez en une ligne la description de ce que représente ce fichier
move approved by: User:Deadstar This image was moved from Image:Fourth Mycielski graph.svg == Summary == Very hastily drawn image of the fourth Mycielski graph. Mycielski proved in 1955 that for every <math>k\ge1</math> there is a graph with c