Fichier:Pythagoras tree 1 1 13 Summer.svg

De testwiki
Aller à la navigation Aller à la recherche
Fichier d’origine (Fichier SVG, nominalement de 618 × 420 pixels, taille : 2,05 Mio)

Ce fichier provient de Wikimedia Commons et peut être utilisé par d'autres projets. Sa description sur sa page de description est affichée ci-dessous.

Description

Description
English: Pythagoras tree
Français : Arbre de Pythagore
Русский: Дерево Пифагора
Date
Source Travail personnel
Auteur Guillaume Jacquenot Gjacquenot
SVG information
InfoField
 Le code de ce fichier SVG est valide.
 Ce diagramme a été créé avec MATLAB
Code source
InfoField
MATLAB code
function M = Pythagor_tree(m,n,Colormap)
% function M = Pythagor_tree(m,n,Colormap)
% Compute Pythagoras_tree
% The Pythagoras Tree is a plane fractal constructed from squares.
% It is named after Pythagoras  because each triple of touching squares 
% encloses a right triangle, in a configuration traditionally used to
% depict the Pythagorean theorem.
% http://en.wikipedia.org/wiki/Pythagoras_tree
%
% Input : 
%       - m ( double m> 0) is the relative length of one of the side
%         right-angled triangle. The second side of the right-angle is 
%         taken to be one.
%         To have a symmetric tree, m has to be 1.
%       - n ( integer ) is the level of recursion.
%         The number of elements of tree is equal to 2^(n+1)-1.
%         A reasonnable number for n is 10.
%       - Colormap: String used to generate color of the different levels
%         of the tree.
%       All these arguments are optional: the function can run with
%       argument.
% Output : 
%       - Matrix M: Pyhagoras tree is stored in a matrix M.
%         This matrix has 5 columns.
%         Each row corresponds to the coordinate of each square of the tree
%         The two first columns give the bottom-left position of each
%         square. The third column corresponds to the orientation angle of
%         each square. The fourth column gives the size of each square. The
%         fifth column specifies the level of recursion of each square.
%         The first row corresponds to the root of the tree. It is always
%         the same
%         M(1,:) = [0 -1 0 1 1];
%         The leaf located at row i will give 2 leaves located at 2*i and
%         2*i+1.
%       - A svg file giving a vectorial display of the tree. The name of
%         file is generated from the parameter m,n,Colormap. The file is
%         stored in the current folder.
%
% 2010 02 29
% Guillaume Jacquenot
% guillaume dot jacquenot at gmail dot com

%% Check inputs
narg = nargin;
if narg <= 2
    % Colormap = 'jet';
    Colormap = 'summer';
    if narg <= 1
        n = 12; % Recursion level    
        if nargin == 0
            m = 0.8;
        end
    end
end
if m <= 0
	error([mfilename ':e0'],'Length of m has to be greater than zero');
end
if rem(n,1)~=0
	error([mfilename ':e0'],'The number of level has to be integer');
end
if ~iscolormap(Colormap)
	error([mfilename ':e1'],'Input colormap is not valid');
end
%% Compute constants
d      = sqrt(1+m^2);                  % 
c1     = 1/d;                          % Normalized length 1
c2     = m/d;                          % Normalized length 2
T      = [0 1/(1+m^2);1 1+m/(1+m^2)];  % Translation pattern  
alpha1 = atan2(m,1);                   % Defines the first rotation angle
alpha2 = alpha1-pi/2;                  % Defines the second rotation angle
pi2    = 2*pi;                         % Defines pi2
nEle   = 2^(n+1)-1;                    % Number of elements (square)
M      = zeros(nEle,5);                % Matrice containing the tree
M(1,:) = [0 -1 0 1 1];                 % Initialization of the tree

%% Compute the level of each square contained in the resulting matrix
Offset = 0;
for i = 0:n
    tmp = 2^i;
    M(Offset+(1:tmp),5) = i;
    Offset = Offset + tmp;
end
%% Compute the position and size of each square wrt its parent
for i = 2:2:(nEle-1)
    j          = i/2;
    mT         = M(j,4) * mat_rot(M(j,3)) * T;
    Tx         = mT(1,:) + M(j,1);
    Ty         = mT(2,:) + M(j,2);    
    theta1     = rem(M(j,3)+alpha1,pi2);
    theta2     = rem(M(j,3)+alpha2,pi2);
    M(i  ,1:4) = [Tx(1) Ty(1) theta1 M(j,4)*c1];
    M(i+1,1:4) = [Tx(2) Ty(2) theta2 M(j,4)*c2];
end
%% Display the tree
Pythagor_tree_plot(M,n);

%% Write results to an SVG file
Pythagor_tree_write2svg(m,n,Colormap,M);

function Pythagor_tree_write2svg(m,n,Colormap,M)
% Determine the bounding box of the tree with an offset
% Display_metadata = false;
Display_metadata = true;

nEle    = size(M,1);
r2      = sqrt(2);
LOffset = M(nEle,4) + 0.1;
min_x   = min(M(:,1)-r2*M(:,4)) - LOffset;
max_x   = max(M(:,1)+r2*M(:,4)) + LOffset;
min_y   = min(M(:,2)          ) - LOffset;  % -r2*M(:,4)
max_y   = max(M(:,2)+r2*M(:,4)) + LOffset;

% Compute the color of tree
ColorM = zeros(n+1,3);
eval(['ColorM = flipud(' Colormap '(n+1));']);
co   = 100;
Wfig = ceil(co*(max_x-min_x));
Hfig = ceil(co*(max_y-min_y));
filename = ['Pythagoras_tree_1_' strrep(num2str(m),'.','_') '_'...
             num2str(n) '_' Colormap '.svg'];
fid  = fopen(filename, 'wt');
fprintf(fid,'<?xml version="1.0" encoding="UTF-8" standalone="no"?>\n');
if ~Display_metadata
    fprintf(fid,'<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"\n'); 
    fprintf(fid,'  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">\n');
end
fprintf(fid,'<svg width="%d" height="%d" version="1.1"\n',Wfig,Hfig); % 
% fprintf(fid,['<svg width="12cm" height="4cm" version="1.1"\n']); % Wfig,

% fprintf(fid,['<svg width="15cm" height="10cm" '...
%              'viewBox="0 0 %d %d" version="1.1"\n'],...
%              Wfig,Hfig);
if Display_metadata
    fprintf(fid,'\txmlns:dc="http://purl.org/dc/elements/1.1/"\n');
    fprintf(fid,'\txmlns:cc="http://creativecommons.org/ns#"\n');
    fprintf(fid,['\txmlns:rdf="http://www.w3.org/1999/02/22'...
                 '-rdf-syntax-ns#"\n']);
end
fprintf(fid,'\txmlns:svg="http://www.w3.org/2000/svg"\n');
fprintf(fid,'\txmlns="http://www.w3.org/2000/svg"\n');
fprintf(fid,'\txmlns:xlink="http://www.w3.org/1999/xlink">\n');

if Display_metadata
    fprintf(fid,'\t<title>Pythagoras tree</title>\n');
    fprintf(fid,'\t<metadata>\n');
    fprintf(fid,'\t\t<rdf:RDF>\n');
    fprintf(fid,'\t\t\t<cc:Work\n');
    fprintf(fid,'\t\t\t\trdf:about="">\n');
    fprintf(fid,'\t\t\t\t<dc:format>image/svg+xml</dc:format>\n');
    fprintf(fid,'\t\t\t\t<dc:type\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://purl.org/dc/dcmitype/StillImage" />\n');
    fprintf(fid,'\t\t\t\t<dc:title>Pythagoras tree</dc:title>\n');
    fprintf(fid,'\t\t\t\t<dc:creator>\n');
    fprintf(fid,'\t\t\t\t\t<cc:Agent>\n');
    fprintf(fid,'\t\t\t\t\t\t<dc:title>Guillaume Jacquenot</dc:title>\n');
    fprintf(fid,'\t\t\t\t\t</cc:Agent>\n');
    fprintf(fid,'\t\t\t\t</dc:creator>\n');
    fprintf(fid,'\t\t\t\t<cc:license\n');
    fprintf(fid,'\t\t\t\t\t\trdf:resource="http://creativecommons.org/licenses/by-nc-sa/3.0/" />\n');
    fprintf(fid,'\t\t\t</cc:Work>\n');
    fprintf(fid,'\t\t\t<cc:License\n');
    fprintf(fid,'\t\t\t\trdf:about="http://creativecommons.org/licenses/by-nc-sa/3.0/">\n');
    fprintf(fid,'\t\t\t\t<cc:permits\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Reproduction" />\n');
    fprintf(fid,'\t\t\t\t<cc:permits\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Reproduction" />\n');
    fprintf(fid,'\t\t\t\t<cc:permits\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Distribution" />\n');
    fprintf(fid,'\t\t\t\t<cc:requires\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Notice" />\n');
    fprintf(fid,'\t\t\t\t<cc:requires\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Attribution" />\n');
    fprintf(fid,'\t\t\t\t<cc:prohibits\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#CommercialUse" />\n');
    fprintf(fid,'\t\t\t\t<cc:permits\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#DerivativeWorks" />\n');
    fprintf(fid,'\t\t\t\t<cc:requires\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#ShareAlike" />\n');
    fprintf(fid,'\t\t\t</cc:License>\n');
    fprintf(fid,'\t\t</rdf:RDF>\n');
    fprintf(fid,'\t</metadata>\n'); 
end
fprintf(fid,'\t<defs>\n');
fprintf(fid,'\t\t<rect width="%d" height="%d" \n',co,co);
fprintf(fid,'\t\t\tx="0" y="0"\n');
fprintf(fid,'\t\t\tstyle="fill-opacity:1;stroke:#00d900;stroke-opacity:1"\n');
fprintf(fid,'\t\t\tid="squa"\n');
fprintf(fid,'\t\t/>	\n');
fprintf(fid,'\t</defs>\n');
fprintf(fid,'\t<g transform="translate(%d %d) rotate(180) " >\n',...
                round(co*max_x),round(co*max_y));
for i = 0:n
    fprintf(fid,'\t\t<g style="fill:#%s;" >\n',...
                generate_color_hexadecimal(ColorM(i+1,:)));            
    Offset = 2^i-1;
    for j = 1:2^i
        k = j + Offset;
        fprintf(fid,['\t\t\t<use xlink:href="#squa" ',...
                     'transform="translate(%+010.5f %+010.5f)'...
                     ' rotate(%+010.5f) scale(%8.6f)" />\n'],...
                    co*M(k,1),co*M(k,2),M(k,3)*180/pi,M(k,4));   
    end
    fprintf(fid,'\t\t</g>\n');
end
fprintf(fid,'\t</g>\n');
fprintf(fid,'</svg>\n');
fclose(fid);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function M = mat_rot(x)
c = cos(x);
s = sin(x);
M=[c -s; s c];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function H = Pythagor_tree_plot(D,ColorM)
if numel(ColorM) == 1
    ColorM = flipud(summer(ColorM+1));
end
H = figure('color','w');
hold on
axis equal
axis off
for i=1:size(D,1)
    cx    = D(i,1);
    cy    = D(i,2);
    theta = D(i,3);
    si    = D(i,4);    
    M     = mat_rot(theta);
    x     = si*[0 1 1 0 0];
    y     = si*[0 0 1 1 0];
    pts   = M*[x;y];
    fill(cx+pts(1,:),cy+pts(2,:),ColorM(D(i,5)+1,:));
    % plot(cx+pts(1,1:2),cy+pts(2,1:2),'r');
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Scolor = generate_color_hexadecimal(color)
Scolor = '000000';
for i=1:3
    c = dec2hex(round(255*color(i)));
    if numel(c)==1
        Scolor(2*(i-1)+1) = c;
    else
        Scolor(2*(i-1)+(1:2)) = c;
    end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function  res = iscolormap(cmap)
% This function returns true if 'cmap' is a valid colormap
LCmap = {...
    'autumn'
    'bone'
    'colorcube'
    'cool'
    'copper'
    'flag'
    'gray'
    'hot'
    'hsv'
    'jet'
    'lines'
    'pink'
    'prism'
    'spring'
    'summer'
    'white'
    'winter'
};

res = ~isempty(strmatch(cmap,LCmap,'exact'));

Conditions d’utilisation

Moi, en tant que détenteur des droits d’auteur sur cette œuvre, je la publie sous les licences suivantes :
GNU head Vous avez la permission de copier, distribuer et modifier ce document selon les termes de la GNU Free Documentation License version 1.2 ou toute version ultérieure publiée par la Free Software Foundation, sans sections inaltérables, sans texte de première page de couverture et sans texte de dernière page de couverture. Un exemplaire de la licence est inclus dans la section intitulée GNU Free Documentation License.
w:fr:Creative Commons
paternité partage à l’identique
Ce fichier est sous licence Creative Commons Attribution – Partage dans les Mêmes Conditions 3.0 Non Transposé, 2.5 Générique, 2.0 Générique et 1.0 Générique.
Vous êtes libre :
  • de partager – de copier, distribuer et transmettre cette œuvre
  • d’adapter – de modifier cette œuvre
Sous les conditions suivantes :
  • paternité – Vous devez donner les informations appropriées concernant l'auteur, fournir un lien vers la licence et indiquer si des modifications ont été faites. Vous pouvez faire cela par tout moyen raisonnable, mais en aucune façon suggérant que l’auteur vous soutient ou approuve l’utilisation que vous en faites.
  • partage à l’identique – Si vous modifiez, transformez ou vous basez sur cet élément, vous devez distribuer votre contribution sous une license identique ou compatible à celle de l’original.
Vous pouvez choisir l’une de ces licences.

Légendes

Ajoutez en une ligne la description de ce que représente ce fichier

Éléments décrits dans ce fichier

dépeint

Historique du fichier

Cliquer sur une date et heure pour voir le fichier tel qu'il était à ce moment-là.

Date et heureVignetteDimensionsUtilisateurCommentaire
actuel1 mars 2010 à 00:16Vignette pour la version du 1 mars 2010 à 00:16618 × 420 (2,05 Mio)wikimediacommons>Gjacquenot{{Information |Description={{en|1=Pythagoras tree}} {{fr|1=Arbre de Pythagore}} |Source={{own}} |Author=Gjacquenot |Date=2010-03-01 |Permission= |other_versions= }} Category:Pythagoras trees

La page suivante utilise ce fichier :