Méthode de Badal

De testwiki
Aller à la navigation Aller à la recherche

La méthode de Badal est une méthode focométrique de détermination expérimentale de la focale d'une lentille divergente.

Principe

On considère une lentille mince divergente de focale f' inconnue, de centre O, de foyers image F' et objet F.

Pour déterminer cette focale f', on va faire deux montages successifs.

Schéma animé sur la méthode de Badal

Premier montage: sans la lentille divergente

On utilise deux lentilles convergentes L1 et L2 de foyers objets respectifs F1 et F2, et de foyers images respectifs F1 et F2.

On met un objet A sur l'axe optique au foyer objet F1 de la première lentille L1. Son image se trouve en A=F2, le foyer image de L2:

A=F1A=F2.

Second montage: avec la lentille divergente

On intercale entre les deux lentilles convergentes la lentille divergente L de focale inconnue au foyer objet F2 de L2.

La nouvelle image de A se trouve en A:

A=F1FA.

Détermination de la focale de la lentille divergente

Pour déterminer la focale inconnue f de la lentille divergente, il suffit ensuite de mesurer la distance AA entre les deux images successives, et de se souvenir de la focale de la seconde lentille convergente (f'2=O2A), en utilisant la relation:

f=f'22AA

Explication

Formation de l'image par la seconde lentille convergente

Dans le montage contenant la lentille divergente, l'image de A par L1 se trouve à l'infini, qui a elle-même comme image F par la lentille divergente.

Si l'on se restreint à la lentille L2, F' est l'objet et A l'image:

FA.

Schéma explicatif sur la conjugaison par la seconde lentille convergente dans la méthode de Badal

Formules de conjugaison de Newton

Les formules de conjugaison de Newton donnent une relation entre les positions sur l'axe optique d'un objet B et de son image B' par rapport aux foyers F2 et F'2 de la lentille L2. Elles sont exprimées avec des distances algébriques.

Soit B un point de l'axe optique et B' son image par la lentille L2:

F'2B.F2B=f'22

Cette formule donne dans notre cas (B=F et B=A): F'2A.F2F=f'22.

Or F'2=A, la première position de l'image, et F2F=f, la focale inconnue.

Aussi, AA.f=f'22, qui devient:

f=f'22AA.

Voir aussi

Articles connexes

Liens externes

Modèle:Portail