« Sous-groupe sous-normal » : différence entre les versions

De testwiki
Aller à la navigation Aller à la recherche
Correction : ça marche pour les groupes de longueur finie.
 
(Aucune différence)

Dernière version du 24 août 2024 à 20:51

En mathématiques, dans le domaine de la théorie des groupes, un sous-groupe H d'un groupe G est un sous-groupe sous-normal de G s'il existe une chaîne finie de sous-groupes du groupe, commençant en H et finissant en G, et dont chaque élément est un sous-groupe normal du suivant.

Définition formelle

Formellement, H est k-sous-normal dans G s'il existe des sous-groupes

H=H0,H1,H2,,Hk=G

de G tels que Hi est normal dans Hi+1 pour chaque i.

Un sous-groupe sous-normal est un sous-groupe qui est k-sous-normal pour un entier positif k.

Historique

Le concept de sous-groupe sous-normal a été introduit sous le nom 'nachinvariante Untergruppe par Helmut Wielandt dans sa thèse d'habilitation en 1939[1]. Wielandt a notamment prouvé que dans un groupe de longueur finie (en particulier fini), le sous-groupe engendré par deux sous-groupes sous-normaux est lui-même sous-normal, donc dans ce cas, que les sous-groupes sous-normaux forment un treillis.

Exemple

Le sous-groupe Z={e,((12)(34))} du groupe symétrique S4 est un sous-groupe normal du groupe de Klein V qui lui-même est un sous-groupe normal de S4. Ainsi, Z est un sous-groupe sous-normal deS4, sans être un sous-groupe normal puisque ((12)(34))(123)=(13)(24) n'est pas dans Z.

Propriétés

Quelques exemples et résultats sur les sous-groupes sous-normaux :

  • Un sous-groupe 1-sous-normal est un sous-groupe normal propre, et réciproquement.
  • Un groupe de type fini est un nilpotent si et seulement si tous ses sous-groupes sont sous-normaux.
  • Un sous-groupe Modèle:Lien et plus généralement un sous-groupe qui commute avec tous ses sous-groupes conjugués d'un groupe fini est sous-normal.
  • Un Modèle:Lien qui est aussi sous-normal est un sous-groupe normal. En particulier, un sous-groupe de Sylow est sous-normal si et seulement s'il est normal.
  • Un sous-groupe 2-sous-normal est un sous-groupe qui commute avec tous ses sous-groupes conjugués.

La relation de sous-normalité est transitive : en d'autres termes, un sous-groupe sous-normal d'un sous-groupe sous-normal est sous-normal. La relation de sous-normalité peut donc être définie comme la fermeture transitive de la relation de normalité.

Articles liés

Notes et références

Modèle:Références Modèle:Traduction/Référence

Bibliographie

Modèle:Portail