Superadditivité
En mathématiques, une suite est dite superadditive si, pour tout m et n, elle satisfait l'inégalité
Le principal avantage des suites superadditives est qu'elles obéissent au lemme de Michael Fekete[1].
De même, une fonction f est dite superadditive si l'on a
pour tout x et y dans le domaine de f.
Par exemple, est une fonction superadditive pour les nombres réels positifs : le carré de Modèle:Math est toujours supérieur ou égal au carré de Modèle:Mvar plus le carré de Modèle:Mvar.
Un lemme analogue à celui de Fekete existe pour les fonctions. Il y a aussi des extensions de ce dernier dans des cas moins forts, par exemple si la propriété de super-additivité n'est pas vérifiée sur tout le domaine de la fonction. D'autres résultats permettent de déduire la vitesse de convergence de cette limite si l'on a à la fois des formes de super- et de sous-additivité. Une bonne présentation de ce sujet peut être trouvée dans Steele (1997)[2]Modèle:,[3].
Si f est une fonction super additive, et si 0 est dans son domaine, alors f(0) ≤ 0. On a en effet
L'inverse de la super-additivité d'une fonction est la sous-additivité.
Exemples de fonctions super-additives
- Le déterminant est superadditif pour les matrices hermitiennes non négatives, c'est-à-dire, si sont des matrices hermitiennes positives, on a : .
C'est une conséquence du théorème du déterminant de Minkowski, il montre en effet de manière générale que est super-additif (c'est-à-dire concave)[4] pour des matrices hermitiennes de taille n on a
- pour des matrices non-négatives.
- Horst Alzer a prouvé [5] que la fonction gamma d'Hadamard est superadditive pour tous nombres réels x, y avec x, y ≥ 1.5031.