Équation d'Allen-Cahn

L’équation d'Allen-Cahn est l'équation de réaction-diffusion du processus de séparation de phases dans des systèmes d'alliage à composantes multiples avec des transitions ordre-désordre. Son nom fait référence à ses inventeurs, John W. Cahn et son étudiant Sam Allen.
Contexte
Formalisme
C'est l'écoulement par gradient sur L2 de la fonctionnelle d'énergie libre de Ginzburg-Landau. L'équation est étroitement liée à l'équation de Cahn-Hilliard.
L'équation décrit l'évolution temporelle d'une variable d'état scalaire dans un domaine durant un intervalle de temps , et s'écrit[1]Modèle:,[2] :
où est la mobilité, est un double puits de potentiel, est le contrôle de la variable d'état à la portion de la frontière , est le contrôle des sources à , est la condition initiale, et est la normale extérieure à .