Constellation de nombres premiers

De testwiki
Version datée du 11 juin 2020 à 21:42 par imported>WikiCleanerBot (v2.02b - Correction syntaxique (Balises <nowiki>))
(diff) ← Version précédente | Version actuelle (diff) | Version suivante → (diff)
Aller à la navigation Aller à la recherche

En mathématiques, une constellation de nombres premiers aussi appelée n-uplet premier, est une suite finie de nombres premiers consécutifs dont la différence entre le premier et le dernier doit être la plus petite possible par rapport au nombre de termes.

Plus précisément, un n-uplet premier est une suite de nombres premiers consécutifs p1,p2,,pn avec pnp1=s(k)s(k) est le plus petit nombre s pour lequel il existe k entiers b1<b2<<bk, bkb1=s et, pour chaque nombre premier q, les résidus modulo q ne sont pas tous représentés par b1,b2,,bk Modèle:Refinc. Pour chaque k, cette définition exclut un nombre fini de groupes au début de chaque suite de nombres premiers. Par exemple, (97, 101, 103, 107, 109) satisfait aux conditions de la définition d'un 5-uplet de nombres premiers, mais pas (3, 5, 7, 11, 13) parce que les trois résidus modulo 3 sont représentés. Modèle:Refinc

Un doublet de nombres premiers avec s(2)=2 est de la forme (p,p+2) et est appelé une paire de nombres premiers jumeaux. Les doublets de nombres premiers de la forme (p,p+4) sont appelés nombres premiers cousins, et les doublets de la forme (p,p+6) sont appelés des nombres premiers sexy.

Pour un triplet de nombres premiers s(3)=6. La constellation (p,p+2,p+4) ne peut pas exister, excepté pour p=3, puisqu'un des nombres p,p+2,p+4 doit être divisible par 3. Néanmoins, il existe plusieurs sortes de triplets de nombres premiers : (p,p+2,p+6), (p,p+4,p+6), (p,p+6,p+12). Par exemple pour cette dernière constellation, on peut citer comme exemples (62627,62633,62639) ou encore (76 481,76487,76493).

Un quadruplet de nombres premiers est une constellation de quatre nombres premiers successifs ayant pour distance minimale s(4)=8, et de la forme (p,p+2,p+6,p+8) ou (p,p+6,p+12,p+18).Par exemple, pour cette dernière constellation, on peut citer (251,257,263,269).

La suite s(n) continue ainsi : 12, 16, 20, 26, 30, ... (Modèle:OEIS).

L'écart le plus fréquent entre nombres premiers est d'abord 2, puis 6, et l'on conjecture que ce serait ensuite 30, 210, 2310, … c'est-à-dire les primorielles de pn[1].

Références

Modèle:Références

Modèle:Palette Modèle:Portail