Lemme des noyaux
En algèbre linéaire, le lemme des noyaux, aussi appelé théorème de décomposition des noyaux, est un résultat sur la réduction des endomorphismes. Dans un espace vectoriel E sur un corps commutatif K, si un opérateur u de E est annulé par un polynôme P(X) à coefficients dans K, alors ce lemme prévoit une décomposition de E comme somme directe de sous-espaces vectoriels stables par u. Ces derniers se définissent comme noyaux de polynômes en u et les projecteurs associés sont eux-mêmes des polynômes en u.
La démonstration traduit l'identité de Bézout portant sur les polynômes à des sous-espaces vectoriels. Résultat fondamental, le lemme des noyaux conduit à la décomposition de Dunford puis à la décomposition de Jordan. Plus modestement, le lemme des noyaux montre qu'un opérateur u est diagonalisable si et seulement s'il est annulé par un polynôme scindé à racines simples.
Énoncé
Applications
Le lemme des noyaux sert pour la réduction des endomorphismes. Par exemple :