Conjecture de Scholz

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Voir homonymes Modèle:Ébauche En mathématiques, la conjecture de Scholz, parfois appelée conjecture de Scholz-Brauer ou conjecture de Brauer-Scholz, fut proposée en 1937. Elle prétend que

l(2n1)n1+l(n)

l(n) est la longueur de la plus courte chaîne d'additions qui produit n, c'est-à-dire le plus petit entier m pour lequel il existe une suite (v0,,vm) telle que v0=1, vm=n, et chaque vi est de la forme vj+vk avec j,k<i.

Elle a été démontrée dans de nombreux cas, mais pas dans le cas général.

Par exemple pour n = 5 on a égalité, car l(5)=3 (puisque 1+1=2, 2+2=4, 4+1=5 et il n'existe pas de chaîne plus courte), l(31)=7 (1+1=2, 2+1=3, 3+3=6, 6+6=12, 12+12=24, 24+6=30, 30+1=31), et

l(251)=51+l(5).

Des considérations élémentaires sur la nature des chaînes d'additions et le codage binaire permettent d'établir l'inégalité suivante, plus faible :

l(2n1)2(n1),

mais une preuve qui permettrait de remplacer par l(n) l'un des deux « n1 » du majorant n'a pas encore été trouvée.

Liens externes

Références

Modèle:Traduction/Référence

Modèle:Portail