Hexacode

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Ébauche En théorie des codes, l'hexacode est un code linéaire de longueur 6 et de dimension 3 sur le corps fini 𝔽4={0,1,ω,ω2} à quatre éléments défini par

H={(a,b,c,f(1),f(ω),f(ω2)):f(x):=ax2+bx+c;a,b,c𝔽4}.

Une famille génératrice de H est donnée par :

(1,0,0,1,ω2,ω),(0,1,0,1,ω,ω2),(0,0,1,1,1,1).

Ainsi, H est un sous-espace de dimension 3 de l'espace vectoriel de dimension 6 qu'est 𝔽46. Il contient 45 éléments de poids 4, 18 éléments de poids 6 et le vecteur nul. Le Modèle:Lien faibles de l'hexacode est 3S6.

L'hexacode peut être utilisé pour décrire le Modèle:Lien inventé par Rob T. Curtis, une méthode commode pour retrouver des générateurs du plus grand groupe de Mathieu M24.

Références

Modèle:Traduction/Référence

Modèle:Portail