Loi inverse-gaussienne

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Infobox Distribution statistiques

En théorie des probabilités et en statistique, la loi inverse-gaussienne (ou loi gaussienne inverse ou encore loi de Wald) est une loi de probabilité continue à deux paramètres et à valeurs strictement positives. Elle est nommée d'après le statisticien Abraham Wald.

Le terme « inverse » ne doit pas être mal interprété, la loi est inverse dans le sens suivant : la valeur du mouvement brownien à un temps fixé est de loi normale, à l'inverse, le temps en lequel le mouvement brownien avec une dérive positive (drifté) atteint une valeur fixée est de loi inverse-gaussienne.

Sa densité de probabilité est donnée par

f(x;μ,λ)={(λ2πx3)1/2expλ(xμ)22μ2x pour x>0,0 sinon.

Modèle:Math est son espérance et Modèle:Math est un paramètre de forme.

Lorsque Modèle:Math tend vers l'infini, la loi inverse-gaussienne se comporte comme une loi normale, elle possède plusieurs propriétés similaires avec cette dernière.

La fonction génératrice des cumulants (logarithme de la fonction caractéristique) de la loi inverse-gaussienne est l'inverse de celle de la loi normale.

Pour indiquer qu'une variable aléatoire X est de loi inverse-gaussienne de paramètres μ et λ, on utilise la notation XIG(μ,λ).

Propriétés

Somme

Si les variables aléatoires Xi, i=1,2,,n ont pour loi IG(μ0wi,λ0wi2) respectivement, et sont indépendantes, alors leur somme est de loi inverse-gaussienne :

S=i=1nXiIG(μ0wi,λ0(wi)2).

Il est à remarquer que

Var(Xi)E(Xi)=μ02wi2λ0wi2=μ02λ0

est constant pour tout i. C'est une condition nécessaire pour cette formule de sommation.

Échelle

Si X est de loi inverse-gaussienne, alors pour tout Modèle:Math, tX est de loi inverse-gaussienne dont les paramètres sont multipliés par t :

XIG(μ,λ)tXIG(tμ,tλ).

Famille exponentielle

La loi inverse-gaussienne est une famille exponentielle à deux paramètres avec pour paramètres naturels λ2μ2 et λ2, et pour statistiques naturelles X et 1/X.

Lien avec le mouvement brownien

Le processus stochastique X=(Xt,t0) défini par

{X0=0Xt=νt+σWt

(Wt,t0) est le mouvement brownien standard et Modèle:Math, est un mouvement brownien drifté par Modèle:Math.

Ainsi, le temps d'atteinte (ou premier temps de passage) de la valeur (ou niveau) Modèle:Math fixé par X est aléatoire et de loi inverse-gaussienne :

Tα=inf{t>0Xt=α}IG(αν,α2σ2).

Pour un drift nul

Un cas particulier usuel de l'explication précédente est le cas où le mouvement brownien n'a pas de drift. Dans ce cas, le paramètre Modèle:Math tend vers l'infini, et le temps d'atteinte d'une valeur Modèle:Math fixée est une variable aléatoire de densité de probabilité celle de la distribution de Lévy avec paramètre c=α2σ2 :

f(x;0,(ασ)2)=ασ2πx3exp(α22xσ2).

Maximum de vraisemblance

Considérons le modèle donné par

XiIG(μ,λwi),i=1,2,,n

où tous les Modèle:Mvar sont connus, (μ,λ) sont inconnus et où les variables indépendantes Modèle:Mvar ont pour fonction de vraisemblance :

L(μ,λ)=(λ2π)n2(i=1nwiXi3)12exp(λμi=1nwiλ2μ2i=1nwiXiλ2i=1nwi1Xi).

En résolvant l'équation de vraisemblance, on obtient les estimées suivantes :

μ^=i=1nwiXii=1nwi,1λ^=1ni=1nwi(1Xi1μ^).

μ^ et λ^ sont indépendants et

μ^IG(μ,λi=1nwi),nλ^1λχn12.

Simulation numérique de la loi inverse-gaussienne

L'algorithme suivant peut être utilisé pour générer des valeurs de la loi inverse-gaussienne[1].

Prendre N𝒩(0,1)
et y=N2
et X=μ+μ2y2λμ2λ4μλy+μ2y2.
Prendre Z𝒰(0,1).
Si Zμμ+xretourner x
Sinon retourner μ2x

Liens avec d'autres lois

La convolution de la loi inverse-gaussienne et de la loi exponentielle est utilisée comme modélisation du temps de réponse en psychologie[2]. Elle est appelée loi ex-Wald.

Historique

Cette loi fut initialement utilisée par Erwin Schrödinger en 1915 comme temps d'atteinte du mouvement brownien[3]. Le nom « inverse-gaussienne » (inverse Gaussian en anglais) fut proposé par Tweedie en 1945[4]. Abraham Wald réutilise cette loi en 1947 comme la forme limite d'un échantillon dans un test. Tweedie détaille des propriétés statistiques de cette loi en 1957.

Logiciel

Le langage de programmation R possède cette loi[5]Modèle:,[6].

Notes et références

Références

Modèle:Références

  • The inverse gaussian distribution: theory, methodology, and applications by Raj Chhikara and Leroy Folks, 1989 Modèle:ISBN
  • System Reliability Theory by Marvin Rausand and Arnljot Høyland
  • The Inverse Gaussian Distribution by Dr. V. Seshadri, Oxford Univ Press, 1993

Liens externes

Modèle:Palette

Modèle:Portail

  1. Modèle:En Generating Random Variates Using Transformations with Multiple Roots by John R. Michael, William R. Schucany and Roy W. Haas, American Statistician, Vol. 30, No. 2 (May, 1976), pp. 88–90
  2. Modèle:En Schwarz W (2001) The ex-Wald distribution as a descriptive model of response times. Behav Res Methods Instrum Comput 33(4):457-469
  3. Schrodinger E (1915) Zur Theorie der Fall- und Steigversuche an Teilchen mit Brownscher Bewegung. Physikalische Zeitschrift 16, 289-295
  4. Folks JL & Chhikara RS (1978) The inverse Gaussian and its statistical application - a review. J Roy Stat Soc 40(3) 263-289
  5. http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html
  6. Package statmod