Longueur de Planck
La longueur de Planck ou échelle de Planck est une unité de longueur qui fait partie du système d'unités naturelles dites unités de Planck et vaut m.
Notée , elle est déterminée uniquement en termes des constantes fondamentales de la relativité, de la gravitation et de la mécanique quantique.
Elle représente l'échelle de longueur à laquelle une description classique Modèle:Incise de la gravitation cesse d'être valide, et la mécanique quantique doit être prise en compteModèle:SfnModèle:,Modèle:Sfn.
Dans une lettre de 1953 à Ilse Rosenthal-Schneider, Einstein écrit : Modèle:CitationModèle:Sfn
Nom
La longueur de PlanckModèle:Sfn est aussi connue comme la longueur de Planck-WheelerModèle:Sfn en hommage à John A. WheelerModèle:Sfn (Modèle:Date--Modèle:Date-), le physicien théoricien américain qui l'a étudiée en Modèle:DateModèle:Sfn.
Définition
La longueur de Planck est définie comme la longueur d'onde de Compton réduite d'une particule de masse égale à la masse de PlanckModèle:SfnModèle:,Modèle:Sfn, d'oùModèle:Sfn :
La longueur de Planck est définie parModèle:SfnModèle:,Modèle:Sfn :
- ,
où :
- est la constante de Planck réduite
- est la constante gravitationnelle
- est la vitesse de la lumière dans le vide.
Dans le Système international d'unitésModèle:Sfn :
- m,
avec une incertitude-type relative de 1,1Modèle:X10.
Un hypothétique trou noir électronique aurait un rayon de l'ordre de 10-57 m, une vingtaine d'ordres de grandeur plus petit.
Interprétation
Effets gravitationnels et quantiques
La longueur de Planck est approximativement la taille d'un trou noir pour lequel les effets quantiques et gravitationnels sont à la même échelle, c'est-à-dire que sa longueur d'onde de Compton et son rayon de Schwarzschild sont du même ordre[1]Modèle:,[2].
Certaines théories de gravité quantique prédisent l'apparition de mousse quantique à l'échelle de Planck, en raison des fluctuations de la métrique de l'espace-temps[3].
Limite physique de l'observabilité
On considère que la longueur de Planck est la distance mesurable la plus courte, parce que toute tentative d'observer sur des distances plus courtes, par des collisions à plus haute énergie, entraînerait inévitablement la production de trous noirs.
Pour pouvoir observer une entité physique à une échelle de longueur avec un faisceau lumineux, il faut une lumière dont la longueur d'onde est de l'ordre de . Chaque photon d'un tel faisceau a une énergie de l'ordre de , énergie qui déforme l'espace-temps dans son voisinage. Le rayon de Schwarzschild d'un tel photon sera alors , où est la longueur de Planck. Si donc on cherche à explorer des échelles de longueur plus petites que , le photon sera un trou noir de rayon supérieur à cette longueur, et donc toute observation en dessous d'une telle échelle est en réalité impossible[4].
À cette échelle, on prévoit de violentes et imprévisibles fluctuations de la géométrie de l'espace-temps, dénuant de sens le concept de longueur et de dimensionnalité à des échelles inférieures[5]. C'est à ces échelles de longueur qu'une fluctuation quantique peut être suffisamment violente pour créer une particule de Planck.
Une autre manière de voir la limite que représente la longueur de Planck est la suivante. Les relations d'incertitude de Heisenberg impliquent que pour « tracer des graduations » à l'échelle de la longueur de Planck, afin de les comparer aux longueurs à mesurer, il faudrait mobiliser une densité d'énergie de l'ordre de la Densité de Planck, c'est-à-dire y consacrer asymptotiquement la masse de l'Univers[6]. De ce fait, c'est la limite pratique d'une mesure de longueur, lorsque l'énergie qui y est consacrée augmente indéfiniment.
Théorie des supercordes
Dans la théorie des supercordes, la longueur de Planck est l'ordre de grandeur de la longueur des cordes vibrantes qui forment les particules élémentaires. Le corollaire le plus important de ce postulat est qu'aucune longueur inférieure n'a de sens physique[7]. La longueur des cordes Modèle:Mvar est reliée à la longueur de Planck par la formule Modèle:Math, où Modèle:Mvar est la constante de couplage des cordes. Contrairement à ce que son nom suggère, cette "constante" ne l'est pas, mais dépend de la valeur d'un champ scalaire dénommé dilaton.
En elle-même, cette façon de voir les choses résout certaines incompatibilités constatées lors de l'utilisation conjointe des équations de la relativité générale et de la mécanique quantique.
Relativité d'échelle
Certaines théories physiques fondées sur l'idée d'une distance minimale, comme la gravité quantique à boucles, nécessitent que la longueur de Planck soit un invariant relativiste. Cela implique des contraintes supplémentaires sur la théorie de la relativité, donnant naissance à une relativité doublement restreinte hypothétique[8].
Dans la théorie de la Relativité d'échelle, proposée par Laurent Nottale, la longueur de Planck correspond à une limite objective : c'est celle au-delà de laquelle deux points sont indiscernables, ou plus précisément, c'est la limite absolue de la précision d'une mesure de longueur lorsque l'énergie qui y est consacrée tend vers l'infini. En effet, les relations d'incertitude de Heisenberg énoncent qu'il faudrait une énergie-impulsion infinie ne serait-ce que pour tracer des graduations à cette échelle, ou pour les comparer aux longueurs à mesurer[6].
Notions connexes
La longueur de Planck est une des quatre unités de base du système d'unités de Planck, les trois autres étant la [[Masse de Planck|masse (mModèle:Ind)]], la [[Temps de Planck|durée (tModèle:Ind)]], la [[Température de Planck|température (TModèle:Ind)]] et la [[Charge de Planck|charge (qModèle:Ind) de Planck]]Modèle:SfnModèle:,Modèle:Sfn. Modèle:Loupe La surface de Planck est le quart de l'aire dont s'accroît l'horizon d'un trou noir sphérique lorsqu'il absorbe un bit d'information. Dans la gravitation quantique à boucles, les surfaces sont quantifiées, et la surface élémentaire est de l'ordre de la surface de Planck.
La longueur de Stoney est reliée à celle de Planck parModèle:Sfn :
- ,
où est le constante de structure fine.
Notes et références
Voir aussi
Bibliographie
Dictionnaires et encyclopédies
Articles connexes
Liens externes
- ↑ John Baez, The Planck Length
- ↑ Modèle:Lien web
- ↑ Modèle:Ouvrage
- ↑ Théorie des cordes et gravité quantique, C. Bachas, Laboratoire de Physique Théorique, UMR 8549, CNRS/ENS, Paris.
- ↑ Kip Thorne, John Wheeler, Charles W. Misner Gravitation (W. H. Freeman and Company, 1973) chapitre 1.2
- ↑ 6,0 et 6,1 Relativité d'échelle et cosmologie, Laurent Nottale, Ciel et Terre, Bulletin de la Société Royale Belge d'Astronomie vol. 114(2), 63-71 (1998).
- ↑ Modèle:Article
- ↑ Lee Smolin Rien ne va plus en physique Dunod, 2007