Modèle d'Einstein
En physique statistique et en physique du solide, le modèle d’Einstein est un modèle permettant de décrire la contribution des vibrations du réseau à la capacité calorifique d’un solide cristallin. Il repose sur les hypothèses suivantes :
- chaque atome de la structure est un oscillateur harmonique quantique 3D,
- les atomes vibrent à la même fréquence, contrairement au modèle de Debye.
Ce modèle est nommé d’après Albert Einstein, qui l'a proposé en 1907[1].
Énergie interne
Les vibrations du réseau cristallin sont quantifiées[2], c’est-à-dire que les énergies de chaque mode normal de vibration ne peuvent prendre que des valeurs discrètes . Ce modèle repose donc sur la dualité onde-particule des phonons et sur le fait que les 3N oscillateurs harmoniques[3] vibrent à la même fréquence, de manière isotrope.
L’énergie interne U du solide est donnée par la formule :
où ℏ est la constante de Planck réduite, ωModèle:Ind est la pulsation d’un oscillateur, N le nombre d’atomes qui constituent le système et où kB est la constante de Boltzmann et T la température absolue.
Capacité calorifique
La capacité calorifique CV est définie par :
avec , on obtient
On peut définir la température d’Einstein comme . Tout cela nous donne
Résultats du modèle

Le modèle d’Einstein retrouve la loi de Dulong et Petit, pour les hautes températures :
Cependant, à basse température, ce modèle concorde moins avec les mesures expérimentales que celui de Debye :
Lorsque
Cette discordance avec l’expérience peut s’expliquer en abandonnant l’hypothèse selon laquelle les oscillateurs harmoniques vibrent à la même fréquence.
Voir aussi
Articles connexes
Bibliographie
Notes et références
- ↑ Modèle:Einstein1907
- ↑ Cette quantification est due aux conditions aux limites imposées au solide.
- ↑ On modélise les N atomes qui constituent le solide par 3N oscillateurs harmoniques quantiques à une dimension.