Naphtalène

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Infobox Chimie

Le naphtalène ou naphtaline ou camphre de goudron est un hydrocarbure aromatique polycyclique, plus précisément un alcène à deux cycles, de formule brute Modèle:Fchim. Son odeur caractéristique est perceptible par l'odorat humain à partir de Modèle:Unité[1]. Il a été couramment utilisé comme antimites. On a constaté par le suivi des maladies des travailleurs de l'industrie chimique qu'il était possiblement cancérigène[2]Modèle:,[3].

Origine et fabrication

Le naphtalène a été isolé en 1820 par Garden[4] (1784-1866). Sa représentation actuelle sous la forme de deux noyaux aromatiques est proposée par Erlenmeyer en 1868.

En Allemagne, la matière première utilisée pour la production de naphtalène est le goudron de houille, qui en contient environ 10 %. La production de coke étant en régression, on utilise de plus en plus des produits dérivés du pétrole (essence de pyrolyse, huiles résiduelles de pyrolyse) ; fabrication par distillation fractionnée.

La teneur en naphtalène dans le produit technique est 95 % au moins, le reste étant constitué d'impuretés telles que les benzo(b)thiophènes (thionaphtènes) et, pour les naphtalènes issus du pétrole, exclusivement de méthylindènes.

Usages

Des boules de naphtalène utilisées contre les mites aux Philippines.

Le naphtalène était autrefois surtout utilisé comme répulsif contre les mites (on a aussi utilisé le paradichlorobenzène pour cet usage). Aujourd'hui, 60 % du naphtalène produit est vendu comme produit chimique intermédiaire dans la fabrication d'anhydride phtalique, selon l'INERIS. Cet anhydride phtalique sert à synthétiser les phtalates et divers agents plastifiants, résines, teintures, insecticides ou répulsifs, etc. Il est aussi employé comme agent de tannage du cuir et dans certains tensioactifs (sulfonates de naphtalène et dérivés ayant fonction d'agents dispersants ou mouillants en peinture, teinture, formulation de papier d'emballage, dans la fabrication du béton et de plaques de plâtre).

Le napalm, notablement utilisé lors de la guerre du Viêt Nam, était initialement obtenu à partir de naphtalène (d'où le « na ») et d'acide palmitique (d'où le « palm »). Le naphtalène est d'ailleurs utilisé pour obtenir des effets pyrotechniques, l'explosion produisant une fumée très noire.

Il peut être utilisé pour fabriquer certains plastiques (notamment en synthétisant des phtalates), des colorants... mais aussi pour d'autres applications, plus marginales : antiseptique, microbicide, diélectrique, parfums...

Dans l'environnement

Une espèce de termite américain Coptotermes formosanus sécrète de petites quantités de naphtalène pour lutter contre des parasites et son principal prédateur, la fourmi Solenopsis invicta[5], mais l'essentiel du naphtalène présent dans la nature (89 % environ selon l'INERIS) vient de combustions incomplètes (pyrolyse) (chauffage domestique au bois) et de la sublimation du naphtalène utilisé comme insecticide. Environ 10 % des émissions dans l'air viendraient de la distillation du charbon. La fumée de tabac en contient de petites quantités.
Le naphtalène étant volatil (par sublimation) il s'y disperse rapidement. Le taux moyen dans l'air serait de Modèle:Unité, soit bien plus que dans l'eau de mer où il est peu soluble (Modèle:Unité) et d'où il peut dégazer dans l'air (idem pour l'eau douce). Les sols (Modèle:Unité en moyenne) le retiennent mal (dégazage, adsorption moyenne). Il est habituellement peu présent dans les sédiments (Modèle:Unité)[6]. Les essais d’adsorption/désorption répertoriés par l'INERIS donnent des Koc de 378 à Modèle:Unité[7]Modèle:,[8]Modèle:,[9]. La Commission européenne (CE, 1996) a retenu une valeur de Modèle:Unité.

Bioaccumulation

Ses effets écotoxicologiques sont mal connus, mais il a été montré qu'il est bioaccumulable chez plusieurs espèces de poissons (ex : Cyprinus carpio, Pimephales promelas[10]), moules (Mytilus edulis) et huîtres (Ostrea edulis)[11].
Le naphtalène semble pouvoir être absorbé par les racines et feuilles des plantes, mais l'INERIS en 2005 n'a pas trouvé d'études sur ses effets ni sur d'éventuels facteurs de bioconcentration.

Dégradation

Compte tenu de sa structure chimique le naphtalène est réputé très stable.
Il semble très peu biodégradable en conditions normales. Un test standard[12] n'a montré que 2 % de dégradation après 28 jours, mais des tests (non normalisés) laissent penser qu'il peut être rapidement biodégradé en conditions aérobies et dénitrifiantes lorsque mis en contact avec certains micro-organismes qui le font quasiment disparaître en 8 à 12 jours dans les meilleurs cas[13]Modèle:,[14]Modèle:,[15].
La Commission européenne (CE, 1996) a retenu une demi-vie de 150 jours dans les eaux de surface. Quelques tests (non normalisés) de biodégradéation en condition anaérobie et notamment dans les sédiments, laissent penser qu'il est stable dans ces conditions[16].

Toxicologie

Divers rapports de l'ATSDR (1995) et de l'Environmental Protection Agency aux États-Unis (1998) ont mis en avant plusieurs caractéristiques toxicologiques de ce produit (voir aussi le rapport INERIS « Hydrocarbures Aromatiques Polycycliques (HAPs) : Évaluation de la relation dose-réponse pour des effets cancérigènes - Approche substance par substance[17].

Ils estiment que le naphtalène peut être absorbé et dans certains cas provoquer un empoisonnement via les tractus respiratoire et digestif ainsi qu'au travers de la peau en contact avec des draps ou vêtements traités par un anti-mite, notamment chez le nouveau-né[18]. Par ailleurs, on a constaté qu'une exposition chronique peut provoquer des cataractes et des lésions de la rétine[19].

Dans l'organisme humain, on connait au moins deux métabolites stables du naphtalène ; le 1-naphtol et le 1,2-dihydro naphtalène diol[20]. Selon l'INERIS, le naphtalène peut être méthylé en 1-méthylnaphatlène (peut-être moins toxique que le naphtalène) ou en 2-méthylnaphatlène. Il est majoritairement peu à peu éliminé en métabolites via les urines.

Les enfants sont plus sensibles à cette molécule. Les individus d’origine africaine et asiatique y sont plus sensibles en raison d'une déficience plus fréquente de l’enzyme G6PD[21].

Sources d'exposition des organismes vivants

Modèle:Début de colonnes

Modèle:Fin de colonnes

Effet sur la santé

L'inhalation serait la première source d'exposition selon l'AFSSET qui notait en 2010 qu'on ne dispose que de rares données d'exposition (Ex : 7 % de 555 logements allemands étudiés de 2003 à 2006 avaient un taux de naphtalène dans l'air dépassant la limite de quantification (Modèle:Unité/2), sans toutefois dépasser Modèle:Unité/2) [22].

  • Le naphtalène est classé en tant que substance cancérogène de catégorie 3 par l’Union Européenne, et dans le groupe 2B par le Centre international de recherche sur le cancer (CIRC). L'AFSSET n'a pas trouvé d'informations sur la relation dose-effet et estime que « les données humaines ne sont pas suffisantes pour établir un lien causal entre l’exposition au naphtalène et la survenue de cancer », mais que chez l’animal, l'incidence des adénomes de l’épithélium respiratoire et des neuroblastomes de l’épithélium olfactif (tumeur très rare) augmentent à la suite d'une exposition à ce gaz, ces données n'étant toutefois « pas en l’état transposables à l’Homme » [23].
  • Selon les expériences in vivo et in vitro, le naphtalène n'est pas génotoxique[23]

Symptômes possibles ;

  • anémie, quelles que soient les voies d’exposition (et avec des cas documentés d'anémies hémolytiques ayant entraîné la mort[23], et accompagnée d'un ictère chez le nouveau-né, y compris contaminé in utero, le placenta ne faisant pas barrière à cette molécule[23])
  • hémorragies,
  • coagulum
  • cataracte (exposition professionnelle)
  • voire des hallucinations.

Valeurs seuil, valeur guide

Selon l'AFSSET, avant 2010, il n'y avait pas de valeurs de références existantes (VG et VTR)

  • Pas de VG (Valeur Guide), ni de VTR (Valeur Toxicologique de Référence[24]) pour le naphtalène en cas d'exposition aiguë ;
  • Aucune donnée toxicologique humaine disponible pour des expositions intermédiaires ;
  • une valeur guide d'INDEX[25] de Modèle:Unité/2, a été produite appuyée sur le seuil d'effets irritants du produit sur les muqueuses nasales.

En France, la VGAI long terme a été fixée par l'AFSSET (valeur pour 2010, à la suite d'une auto-saisine de 2004[23] de 2010) à : Modèle:Unité/2 pour une exposition supérieure à un an

Notes et références

Modèle:Références

Voir aussi

Liens externes

Modèle:Palette Hydrocarbures aromatiques polycycliques Modèle:Portail

  1. Verschueren K. (1996) - Naphtalene. Handbook of Environmental Data on Organic Chemicals. New York, Van Nostrand Reinhold Co. 3rd Ed, pp. 1756-1762.
  2. Wolf O. (1976) - Cancers in chemical workers in a former naphtalene purification plant. Dt Gesundh Wesen, 31, 996-999
  3. Wolf O. (1978) - Carcinoma of the larynx in naphtalene purifiers. Z Ges Hyg., 24, 737-739
  4. Chimiste écossais, ses découvertes ont été mentionnées par Michael Faraday. Membre fondateur de la Pharmaceutical Society et fournisseur en acide gallique du daguerréotypiste Talbot, il avait étudié sous la direction de Friedrich Accum (1769-1838), préparateur d'Humphry Davy à la Royal Institution.
  5. Article d'Anne Gallus dans "le Monde" du 12 avril 1998
  6. Source : INERIS, d'après ATSDR (1995) et HSDB (2000)
  7. Rippen G., Ilgenstein M., Klöpffer W. and Poremski H. (1982) - Screening of the adsorption behaviour of new chemicals: natural soils and model adsorbents. Ecotoxicol Environ Saf, 6, 236
  8. Bouchard D. C., Mravik S. C. and Smith G. B. (1990) - Benzene and naphthalene sorption on soil contaminated with high molecular weight residual hydrocarbons from unleaded gasoline. Chemosphere, 21, 975
  9. Løkke H. (1984) - Sorption of selected organic pollutants in Danish soils. Ecotox Toxicol Environ Saf, 8, 395.
  10. Veith G. D., De Foe D. L. and Bergstedt B. V. (1979) - Measuring and estimating the bioconcentration factors of chemicals in fish. J Fish Res Board Can, 36, 1040-1048.
  11. Riley R. T., Mix M. C., Schaffer R. L. and Bunting D. L. (1981) - Uptake and accumulation of naphthalene by the oyster Ostrea edulis, in a flow-through system. Marine Biol, 61, 267-276
  12. Biodegradation and Bioaccumulation data of existing chemicals based on the CSCL. Chemicals Inspection and Testing Institute. Japan. (méthode OCDE 302 C, CITI, 1992)
  13. Delfino J. J. and Miles C. J. (1985) - Aerobic and anaerobic degradation of organic contaminants in Florida groundwater. Proc Soil Crop Sci Soc Fla, 44, 9-14.
  14. Nielsen P. H. and Christensen T. H. (1994) - Variability of biological degradation of aromatic hydrocarbons in an aerobic aquifer determined by laboratory batch experiments. J Contam Hydrol, 15, 305-320.
  15. Bauer J. E. and Capone D. G. (1985), Effects of four aromatic organic pollutants on microbial glucose metabolism and thymidine incorporation in marine sediments. Appl Environ Microbiol, 49, 828-835
  16. Delaune R. D., Hambrick G. A. and Patrick W. H. (1980) - Degradation of hydrocarbons in oxidised and reduced sediments. Mar Pollut Bull, 11, 103-106
  17. « Hydrocarbures Aromatiques Polycycliques (HAPs) : Évaluation de la relation dose-réponse pour des effets cancérigènes - Approche substance par substance (facteurs d’équivalence toxique – FET) et approche par mélange ; évaluation de la relation dose-réponse pour des effets non cancérigènes : Valeurs Toxicologiques de Référence (VTR) » de l'INERIS (Voir)
  18. Dawson J., Thayer W. and Desforges J. (1958) - Acute hemolytic anemia in the newborne infant due to naphtalene poising: Report of two 2 cases, with investigations into the mechanism of the disease. Blood, 13, 1113-1125
  19. Modèle:Lien web.
  20. Tingle M., Pirmohmed M. and Templeton E. (1993) - An investigation of the formation of cytotoxic, genotoxic, protein-reactive and stable metabolites from naphthalene by human liver microsomes. Biochem Pharmacol, 46 (9), 1529-1538.
  21. Calabrese E. J. (1986) - Ecogenetics: historical foundation and current status. J Occup Med, 28, 10, 1096-1102.
  22. /gesundheit/survey/publikationen/KUS-VOC-Innenraumluft-2008.pdf GerES (2008). Vergleichswerte für flüchtige organische Verbindungen (VOC und Aldehyde) in der Innenraumluft von Haushalten in Deutschland, Ergebnisse des repräsentativen Kinder-Umwelt- Surveys (KUS) des Umweltbundesamtes, Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz, 51: 109-112
  23. 23,0 23,1 23,2 23,3 et 23,4 AVIS de l’Agence française de sécurité sanitaire de l’environnement et du travail Relatif à la proposition de valeur guide de qualité de l’air intérieur pour le naphtalène ; auto-Saisine Afsset (2004)]
  24. Modèle:Lien web.
  25. Valeur guide de qualité de l’air intérieur, proposée par un projet financé par la commission européenne