Sous-groupe à un paramètre

De testwiki
Aller à la navigation Aller à la recherche

Modèle:À sourcer

Un sous-groupe à un paramètre d'un groupe de Lie réel G est un morphisme de groupes de Lie c : ℝ → G. Plus explicitement, c est une application différentiable vérifiant :

s,t,c(t+s)=c(t)c(s).

Propriétés

En dérivant cette relation par rapport à la variable s et en évaluant en s = 0, il vient :

t,c(t)=TeLc(t)(c(0))

Lc(t) désigne la multiplication à gauche par c(t). Un sous-groupe à un paramètre s'obtient comme orbite de l'élément neutre par un champ de vecteurs invariant à gauche de G. Un tel champ X est déterminé par sa valeur X(e) en l'élément neutre e. Il y a donc correspondance univoque entre sous-groupe à un paramètre et l'espace tangent g de G en e :

  • à tout sous-groupe à un paramètre c de G est associé le vecteur c'(0) de g ;
  • à tout vecteur v de g est associé le sous-groupe à un paramètre c : ℝ → G défini par l'équation différentielle c '(t) = TeLc(t)[v] et la condition initiale c '(0) = v.

Les sous-groupes à un paramètre interviennent naturellement dans la définition de l'application exponentielle du groupe de Lie G :

  • l'application exponentielle est l'application exp : gG définie par exp(v) = c(1) où c est le sous-groupe à un paramètre de G associé à X ;
  • tout sous-groupe à un paramètre c s’écrit de manière unique c(t) = exp(t.v) où v = c '(0).

Exemples

Groupe de Lie commutatif

Tout espace vectoriel réel E de dimension finie est un groupe de Lie, la loi interne étant l'addition vectorielle. L'espace tangent en 0 de E s'identifie naturellement avec E en tant qu'espace vectoriel réel. Les sous-groupes à un paramètre de E sont simplement les applications tt.vv parcourt E : ce sont les droites vectorielles paramétrées de E.

La classification des groupes de Lie commutatifs est connue et élémentaire. Tout groupe de Lie commutatif G se réalise comme quotient d'un espace vectoriel E par un sous-groupe discret, un sous-réseau de E. Les sous-groupes à un paramètre de G s'obtiennent donc par passage au quotient des droites paramétrées de E.

Un exemple important est le toreModèle:Exp/ℤModèle:Exp. Les sous-groupes à un paramètre sont les applications cv : tt.v mod ℤModèle:Expv parcourt ℝModèle:Exp. Apparaissent différents comportements :

  • si v est proportionnel à un élément du réseau ℤModèle:Exp, cv est une application périodique, une immersion de la droite réelle, et un difféomorphisme local de ℝ sur un cercle de ℝModèle:Exp/ℤModèle:Exp ;
  • sinon, c est une immersion de la droite réelle, mais l'image n'est pas une variété. En dimension n = 2, l'image est dense dans le tore. En dimension supérieure, l'adhérence de l'image est une sous-variété difféomorphe a un tore, et toutes les dimensions intermédiaires allant de 2 a n sont réalisables.

Groupe des rotations

Pour tout vecteur non nul v de ℝModèle:Exp, l'application R associant à t la rotation d'axe orienté ℝ.v et d'angle t est un sous-groupe à un paramètre du groupe SO(3) des rotations de l'espace euclidien.

Ce sont exactement tous les sous-groupes à un paramètre de SO(3). Il est remarquable de noter qu'ils sont tous des applications périodiques.

Pour rappel, il est courant de paramétrer le groupe SO(3) par les quaternions unitaires.

Les sous-groupes à un paramètre de SModèle:Exp ont pour images les traces des plans vectoriels réels de H contenant 1. Ce sont des difféomorphismes locaux de ℝ sur des grands cercles de SModèle:Exp.

Groupe à un paramètre de difféomorphismes

La définition se généralise sans difficulté aux groupes de Lie de dimension infinie. L'exemple standard est le groupe des difféomorphismes d'une variété différentielle M de dimension n. Il est loisible d'introduire la notion de groupe à un paramètre de difféomorphismes, par exemple.

Un groupe à un paramètre de difféomorphismes est une application différentiable f : ℝ × MM telle que les sections ft soient des difféomorphismes de la variété M vérifiant :

t,s,ft+s=ftfs.

C'est donc simplement une action différentiable de ℝ sur M.

Cette notion est à rapprocher de champ de vecteurs :

  • à tout groupe à un paramètre de difféomorphisme f de M est associé un unique champ de vecteurs X sur M donné par :
    t,ddtft(x)=X[ft(x)] ;
  • réciproquement, si M est compacte, à tout champ de vecteurs X sur M est associé un unique groupe à un paramètre de difféomorphismes f déterminé par la relation ci-dessus, et appelé flot du champ X.

Le champ est alors dit global.

Si M possède plus de structure (variété riemannienne, variété symplectique ou variété de contact par exemple), on peut vouloir que les sections fModèle:Ind préservent cette structure ; dans ce cas, on remplace le terme difféomorphisme par un vocabulaire adapté.

Modèle:Portail