Théorème de Krein-Milman
Le théorème de Krein-Milman est un théorème, démontré par Mark Krein et David Milman en 1940[1], qui généralise à certains espaces vectoriels topologiques un résultat géométrique portant sur les ensembles convexes énoncé par Hermann Minkowski en dimension finie (et souvent improprement dénommé lui-même « théorème de Krein-Milman »).
Une forme particulièrement simplifiée du théorème s'énonce : tout polygone convexe est l'enveloppe convexe de l'ensemble de ses sommets. Cela est vrai aussi d'un polytope convexe.
Notion de « point extrémal »

Soit un convexe et un point de . On dit que est un point extrémal de lorsque est encore convexe. Cela équivaut à dire que, avec , l'égalité implique .
Énoncé en dimension finie
La démonstration n'est pas très longue, l'outil essentiel étant le théorème d'existence d'un hyperplan d'appui en tout point de la frontière d'un convexe.
Généralisation en dimension infinie
Modèle:Théorème La « réciproque (partielle) de Milman »[2] assure que cette représentation d'un convexe compact K comme enveloppe convexe-fermée d'une partie de K est, en un certain sens, optimale : l'adhérence d'une telle partie contient les points extrémaux de K.
Notes et références
Jean-Baptiste Hiriart-Urruty et Claude Lemaréchal, Fundamentals of convex analysis, coll. « Grundlehren Text Editions », Springer, 2001 Modèle:ISBN, p. 41-42, 57 et 246