Vitamine B9

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Infobox Chimie La vitamine BModèle:Ind, autre nom de l'acide folique (folate, folacine ou vitamine M, acide pteroyl-L-glutamique, pteroyl-L-glutamate et acide pteroylmonoglutamique), est une vitamine hydrosoluble de la famille des vitamines B.

L'acide folique est le précurseur métabolique d'une coenzyme, le tétrahydrofolate (Modèle:Fchim ou THF[1]), impliquée notamment dans la synthèse des bases nucléiques, purines et pyrimidines, constituant les acides nucléiques (ADN et ARN) du matériel génétique. Le THF intervient également dans la synthèse d'acides aminés tels que la méthionine, l'histidine et la sérine.

Histoire

En 1929-1931, Lucy Wills décrit une anémie sévère touchant des femmes enceintes de Bombay en Inde. Il s'agissait de femmes vivant dans les conditions du Purdah, avec ségrégation physique et régime alimentaire monotone, dépourvu de fruits et légumes verts[2]. Elle décrit ainsi une anémie mégaloblastique curable par extraits de levure. Cette anémie se retrouve dans d'autres populations ayant un régime analogue.

Des travaux ultérieurs conduisent à l'isolement d'un nutriment se trouvant dans le foie et les légumes verts, appelé folic acid ou folacin, jouant un rôle essentiel dans la maturation cellulaire, entre autres celle des globules rouges. La démonstration expérimentale de son rôle chez le singe, a conduit à une première dénomination de « vitamine M » (M pour Monkey)[3].

En recherchant des analogues structuraux de synthèse de l'acide folique, des produits antagonistes ont été découverts comme le méthotrexate qui bloque la division cellulaire et qui est utilisé contre certains cancers et leucémies.

Dans les années 1960, les effets tératogènes du méthotrexate et de la carence en acide folique sont démontrés chez le rat et la souris.

Dans les années 1980, l'association entre la carence folique et le spina bifida est établie, notamment grâce à Richard Smithells (1924-2002)[4]. Le rôle protecteur d'une supplémentation au cours du premier trimestre de grossesse est mis en évidence en 1991[2]. Les premières recommandations de santé publique sont prises aux États-Unis en 1992[5].

Biochimie

Structure

Le terme « vitamine B9 » désigne un groupe de molécules dites folates et dérivant de l'acide folique.

L'acide folique est constitué d'un noyau ptéridine, d'une molécule d'acide para-aminobenzoïque, et d'une molécule d'acide glutamique. La majorité des folates se trouve sous forme de polyglutamates[6].

Biosynthèse

Les plantes, des champignons (dont Agaricus bisporus, le champignon le plus cultivé au monde) et levures (dont levure de bière), des bactéries et certains protozoaires sont capables de synthétiser des folates, contrairement aux animaux qui doivent trouver ce composé dans leur alimentation.

La dihydroptérine est synthétisée à partir du GMP.

Pour jouer un rôle métabolique actif, l'acide folique doit être transformé en dihydrofolate (Modèle:Fchim), puis en tétrahydrofolate (THF), c'est-à-dire réduits (hydrogénés) par la folate réductase et la dihydrofolate réductase respectivement.

Le tétrahydrofolate reçoit ensuite un groupe méthylène d'un des trois « donneurs de carbone » (sérine, glycine, formaldéhyde) pour former le 5,10-méthylènetétrahydrofolate Modèle:Nobr La sérine est le donneur le plus souvent utilisé chez l'homme.

Rôle métabolique

C'est sous forme de dérivés de l'acide tétrahydrofolique (tétrahydrofolates) que les folates exercent leur action de coenzymes dans de nombreuses réactions de transfert d'unités monocarbonées (en Modèle:Fchim), dont la synthèse Modèle:Langue des purines ou de la TMP (2'-déoxythymidine-5'-phosphate) à partir de la dUMP (2'-déoxyuridine-5'-phosphate).

Le méthylène tétrahydrofolate peut connaître trois destinées différentes :

  1. Réduction en 5,10-méthényltétrahydrofolate, puis en 10-formyltétrahydrofolate, donneur de carbone dans la voie de la synthèse Modèle:Langue des purines ;
  2. Voie de la méthylènetétrahydrofolate réductase : réduction en 5-méthyltétrahydrofolate Modèle:Nobr donneur de méthyle pour la régénération de méthionine à partir de l'homocystéine. Le transfert du méthyle nécessite chez l'homme un relais par la cyanocobalamine, ce qui explique leur coadministration fréquente ;
  3. Formation de thymidine monophosphate à partir de désoxyuridine monophosphate.

En résumé :

Modèle:Fchim → réactions de méthylation
Métabolisme des dérivés du folate

Besoins alimentaires

Pour les animaux et en particulier pour l'humain, la principale source de folate reste l'alimentation (notamment les plantes vertes fraîches et les organes parenchymateux comme le foie et les reins). Ainsi que l'indique leur nom (Modèle:Langue = feuille en latin), on les trouve principalement dans les feuilles, mais ils sont en réalité assez répandus. À l'état naturel, ils sont souvent polyglutamylés (attachés à une ou plusieurs molécules de glutamate) et doivent s'en détacher pour pénétrer dans les cellules (sauf en cas de chimiothérapie au méthotrexate ou de carence prolongée, auxquels cas les cellules peuvent assimiler des folates polyglutamylés).

Chez l'humain, les besoins en acide folique et substances apparentées sont de l'ordre de Modèle:Unité/2 par jour[7].

Déficits en folates

C'est l'une des carences vitaminiques les plus communes, surtout dans les pays et milieux défavorisés. Jusqu'en 1998, près de 20 % de la population générale des États-Unis était concernée par ce déficit, qui a été réduit par l'enrichissement systématique des farines alimentaires en acide folique[6].

Une carence peut survenir dans les situations suivantes :

  • apports insuffisants en aliments riches en folates (légumes verts, fruits et abats) ou besoins accrus (femmes enceintes ou allaitantes) ;
  • pathologies caractérisées par un renouvellement cellulaire important (anémies, cancers...) ou par une malabsorption intestinale (maladies digestives, hépatiques...) ;
  • prise de médicaments anti-folates (méthotrexate, sulfasalazine, anti-épileptique...).
  • beaucoup plus rarement : troubles génétiques du métabolisme des folates.

Une carence en folate entraîne principalement des troubles hématologiques, voisins de ceux d'une carence en vitamine B12, et des troubles neurologiques progressifs. Ceux-ci débutent par une anxiété ou un syndrome dépressif jusqu'à la démence ou à la psychose[6].

Anémie

Un déficit en folates entraîne essentiellement une anémie qui se caractérise par une taille augmentée des hématies (anémie macrocytaire) et l’apparition de mégaloblastes dans la moelle osseuse. Le terme anémie mégaloblastique est habituellement restreint aux carences en vitamine B12 ou en folates, mais toute perturbation de la synthèse des purines, pyrimidines et protéines peut provoquer une anémie mégaloblastique[8].

Dans le traitement des anémies mégaloblastiques, l'acide folique et la [[Vitamine B12|Modèle:Nobr]] ont tous deux leur place. Mais l'acide folique, à lui seul, ne peut ni prévenir, ni guérir les complications neurologiques (syndrome neuro-anémique).

Il est admis d'autre part que la Modèle:Nobr catalyse la synthèse de la thymidine, substance importante pour le métabolisme des nucléotides. La thymidine est formée à partir de la thymine, dont la synthèse est catalysée par l'acide folique. C'est pour cette raison que l'acide folique est combiné à la Modèle:Nobr pour le traitement des anémies normochromes macrocytaires de type mégaloblastique.

Dépression

Un taux d’acide folique bas serait lié à une augmentation du risque de dépression de 55 %[9]Modèle:,[10]. L'association d'acide folique à un antidépresseur pourrait être utile[11]. Modèle:Citation concluent les auteurs. La supplémentation en acide folique pourrait agir sur les récepteurs de la noradrénaline et à la sérotonine[12]Modèle:,[13].

Démence

L'effet inhibiteur sur les déficits cognitifs de la personne âgée est beaucoup plus controversé. Il semble cependant qu'une supplémentation artificielle en acide folique pendant une longue durée sur une population âgée dont la nutrition est carencée en cette vitamine pourrait sensiblement en améliorer l'état cognitif[14]. Les folates permettraient également de diminuer les problèmes d'audition chez la personne âgée[15].

Grossesse

Les folates sont nécessaires à la division et au maintien cellulaire. Un apport est donc crucial pendant les périodes de croissance accélérée, comme l'enfance et la grossesse. La supplémentation en folates durant le premier trimestre de la grossesse diminuerait significativement le risque de certaines malformations. Les recommandations actuelles sont une supplémentation de Modèle:Unité/2 en folates avant la conception (au moins un mois avant et deux mois après) pour la prévention des anomalies de fermeture du tube neural. Le dosage peut être réévalué à la hausse (Modèle:Unité/2) pour les femmes ayant des antécédents d'AFTN (fente labiale[16], anomalies de fermeture du tube neural[17]) ou en cas d'épilepsie[18]. Les recommandations anglaises préconisent cette même dose chez la femme obèse[19].

Cette supplémentation pourrait également diminuer, de manière faible, le risque de survenue d'une malformation cardiaque grave[20] ainsi que celui de la survenue de troubles du spectre autistique[21].

Autres déficits

La supplémentation en folates a des effets controversés en prévention des cancers, des études montrant un effet bénéfique[22], nul[23]Modèle:,[24], ou même délétère, en association avec la [[Vitamine B12|Modèle:Nobr]][25].

L'administration de folates diminue le taux d'homocystéine dans le sang ce qui pourrait abaisser le risque de certaines maladies cardio-vasculaires et l'Alzheimer[26]. Ainsi, il semble que la prise de folates au long cours pourrait diminuer de près de 20 % le risque d'accident vasculaire cérébral[27]. Il pourrait réduire de 30 % à 50 % l'atrophie cérébrale chez les personnes affectées par un déclin cognitif modéré[28]Modèle:,[29].

Les folates étant un facteur de croissance universel, plusieurs médicaments ont été conçus pour interférer avec son métabolisme :

Interaction

L'administration isolée d'un excès d'acide folique chez un patient déjà carencé en [[vitamine B12|Modèle:Nobr]] peut faire apparaître ou aggraver les troubles neurologiques (syndrome neuro-anémique) de carence en Modèle:Fchim[30]. Ainsi l'acide folique seul est contre-indiqué dans la maladie de Biermer, car s'il améliore l'anémie, il provoque l'apparition ou l'aggravation des troubles neurologiques[31]. En effet, le peu de vitamine B12 disponible est alors mobilisé pour l'hématopoièse (à régénération rapide) aux dépens du tissu nerveux (de régénération plus lente).

Il a été constaté que l'acide folique (Vitamine B9) pourrait inhiber la lipase pancréatique qui pourrait être un supplément comme traitement contre l'obésité en diminuant la dégradation des lipides alimentaires[32]

Alimentation

Les aliments riches en vitamine B9 sont, entre autres :

Dans la prévention des anomalies du tube neural, la Modèle:Nobr est indiquée à la dose de Modèle:Unité/2 par jour, deux mois avant la grossesse si elle est programmée, et durant le premier trimestre de grossesse[6].

Selon l'ANSES, les apports nutritionnels conseillés sont environ de Modèle:Unité chez l’adulte et les adolescents, de Modèle:Unité chez les enfants selon la tranche d’âge et de Modèle:Unité chez la femme enceinte[36].

Divers

La vitamine B9 (Modèle:Langue en anglais) fait partie de la liste des médicaments essentiels de l'Organisation mondiale de la santé (liste mise à jour en Modèle:Date-)[37].

En 2013, le traitement par l'acide folique est réservé aux états carentiels avérés, et à la prévention des anomalies de fermeture du tube neural[6].

La supplémentation en acide folique peut être bénéfique pour réduire les marqueurs inflammatoires (hs-CRP, IL-6 et TNF-α) chez les patients atteints du syndrome métabolique[38].

Notes et références

Modèle:Références nombreuses

Voir aussi

Modèle:Autres projets

Liens externes

Modèle:Palette Modèle:Portail

  1. À ne pas confondre avec le tétrahydrofurane, également abrégé « THF » en français.
  2. 2,0 et 2,1 Modèle:OuvrageModèle:Commentaire biblio
  3. D.A. Roe 2000, op. cit., p. 751.
  4. Modèle:En http://medhealth.leeds.ac.uk/info/299/history_of_the_school/365/people_of_achievement/11
  5. Modèle:Article
  6. 6,0 6,1 6,2 6,3 et 6,4 Modèle:Article
  7. Apports Nutritionnels Conseillés par l'Anses
  8. Modèle:Article
  9. Modèle:En Simon Gilbody, « Is low folate a risk factor for depression? A meta-analysis and exploration of heterogeneity » J Epidemiol Community Health 2007; 61: 631-7. Modèle:PMID
  10. Modèle:Article
  11. Modèle:Article
  12. Modèle:Article
  13. Modèle:Article
  14. Modèle:En J Durga, MPJ van Boxtel, EG Schouten, FJ Kok, JJ Jolles, MB Katan, P Verhoef, « Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial » Lancet 2007;369;208-16. Modèle:PMID
  15. Modèle:En J Durga, P Verhoef, Lucien, JC Anteunis, E Schouten, FJ Kok, « Effects of folic acid supplementation on hearing in older adults » Ann Intern Med. 2007;146(1):1-9. Modèle:PMID
  16. Modèle:En Allen J Wilcox, Rolv Terje Lie, Kari Solvoll, Jack Taylor, D Robert McConnaughey, Frank Åbyholm, Hallvard Vindenes, Stein Emil Vollset, Christian A Drevon, « Folic acid supplements and risk of facial clefts: national population based case-control study » BMJ 2007;334:464. Modèle:PMID
  17. Modèle:En MRC Vitamin Study Research Group. « Prevention of neural tube defects: results of the Medical Research Council vitamin study » Lancet 1991;338:131-7. Modèle:PMID
  18. Dwyer ER, Filion KB, MacFarlane AJ, Platt RW, Mehrabadi A, Who should consume high-dose folic acid supplements before and during early pregnancy for the prevention of neural tube defects?, BMJ, 2022;377:e067728
  19. Denison FC, Aedla NR, Keag O et al. Care of women with obesity in pregnancy: Green-top Guideline No. 72, BJOG, 2019;126:e62-106
  20. Modèle:En Ionescu-Ittu R, Marelli AJ, Mackie AS, Pilote L, « Prevalence of severe congenital heart disease after folic acid fortification of grain products: time trend analysis in Quebec, Canada » BMJ 2009;338:b1673. Modèle:PMID
  21. Modèle:En Surén P, Roth C, Bresnahan M. Modèle:Et al. « Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children » JAMA 2013;309:570-7. Modèle:PMID
  22. Modèle:En Giovannucci E. « Epidemiologic studies of folate and colorectal neoplasia: a review » J. Nutr. 2002;132(suppl):2350S-2355S. Modèle:PMID
  23. Modèle:En Cole BF, Baron JA, Sandler RS. Modèle:Et al. « Folic acid for the prevention of colorectal adenomas: A randomized clinical trial » JAMA 2007;297(21):2351-9. Modèle:PMID
  24. Modèle:En Zhang SM, Cook NR, Albert CM, Gaziano JM, Buring JE, Manson JE, « Effect of combined folic acid, vitamin B6, and vitamin B12 on cancer risk in women: A randomized trial » JAMA 2008;300(17):2012-21. Modèle:PMID
  25. Modèle:En Ebbing M, Bønaa KH, Nygård O. Modèle:Et al. « Cancer incidence and mortality after treatment with folic acid and vitamin B12 », JAMA, 2009;302:2119-26. Modèle:PMID
  26. Modèle:En Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, Wilson PW, Wolf PA. « Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer's Disease » N Engl J Med. 2002;346(7):476-83. Modèle:PMID
  27. Modèle:En Wang X, Xianhui Qin, Hakan Demirtas, Jianping Li Modèle:Et al. « Efficacy of folic acid supplementation in stroke prevention: a meta-analysis » Lancet 2007;369:1876-82. Modèle:PMID
  28. Sciences et santé en français de Radio-Canada
  29. Homocysteine-Lowering by B Vitamins Slows the Rate of Accelerated Brain Atrophy in Mild Cognitive Impairment (en anglais)
  30. Modèle:Article
  31. Modèle:Article
  32. Modèle:Article
  33. Modèle:Lien web
  34. Modèle:Lien web
  35. 35,0 35,1 35,2 et 35,3 Les informations originales sont données "par tasse", soit 250 ml ≅ Modèle:Unité
  36. Modèle:Lien web
  37. Modèle:En WHO Model List of Essential Medicines, 19th list, avril 2015, modifié en novembre 2015.
  38. Modèle:Article