Dimension de Hausdorff

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Homon Modèle:Sources à lier En mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff[1], elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch.

L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel. Cependant la dimension de Hausdorff d'un espace métrique quelconque peut ne pas être un entier naturel.

Comment estimer la dimension de Hausdorff de la côte de la Grande-Bretagne

Introduction informelle

Dans un espace euclidien de dimension Modèle:Mvar, une boule de rayon Modèle:Mvar a un volume proportionnel à rd. Intuitivement, on s'attend donc à ce que le nombre N(r) de boules de rayon Modèle:Mvar nécessaires pour recouvrir une boule de rayon unité soit de l'ordre de 1/rd.

On généralise cette notion à un espace métrique compact X quelconque de la façon suivante. Posons N(r) le nombre minimal de boules ouvertes de rayon Modèle:Mvar nécessaires pour recouvrir X. Si, lorsque Modèle:Mvar tend vers 0, N(r) croît comme 1rd, l'espace X est dit de dimension Modèle:Mvar. Plus précisément, Modèle:Mvar est le nombre réel tel que lorsque Modèle:Mvar tend vers 0, N(r)rs tend vers 0 pour tout réel s>d, et vers + pour tout réel s<d.

Définitions

Malheureusement, les limites des quantités N(r)rModèle:Exp introduites dans le paragraphe précédent n'existent pas toujours. On peut contourner cette difficulté en procédant de la façon suivante :

  • On recouvre l'espace X au moyen d'une réunion dénombrable de parties notées AModèle:Ind, chacune étant de diamètre inférieur à r. Le fait d'utiliser une majoration du diamètre permet de prendre des parties arbitrairement petites, par exemple s'il s'agit de recouvrir une partie dénombrable de X, et de minimiser ainsi le rôle d'une telle partie dans le calcul de la dimension de X. Pour tout s réel positif ou nul, on considère la quantité i=1diam(Ai)s. Plus précisément, souhaitant avoir un recouvrement le plus économique possible, on introduit la quantité[2] :Modèle:Retrait
  • La fonction rHrs est décroissante, ce qui assure l'existence d'une limite (éventuellement infinie) quand on fait tendre r vers 0. D'où la définition :Modèle:RetraitHModèle:Exp s'appelle mesure de Hausdorff s-dimensionnelle.
  • On vérifie que si HModèle:Exp(X) est fini alors, pour tout t > s, HModèle:Exp(X) = 0 et que si HModèle:Exp(X) > 0 alors, pour tout t < s, HModèle:Exp(X) est infini. Il existe donc un nombre séparant les nombres s pour lesquels HModèle:Exp(X) = 0 de ceux pour lesquels HModèle:Exp(X) est infini. Ce nombre est la dimension de Hausdorff de X. On pose donc[2]
    dimH(X)=inf{sHs(X)=0}=sup{sHs(X)=}.

La mesure de Hausdorff de X pour cette dimension, HdimH(X)(X), seule à n'être éventuellement ni nulle, ni infinie, est souvent notée simplement H(X) et appelée mesure de Hausdorff de X sans autre précision ; pour des sous-ensembles « assez simples » de n, elle est proportionnelle à la mesure de Lebesgue.

Propriétés

  • Si X est inclus dans (Y,DY), alors dimHXdimHY.
  • La dimension de Hausdorff d’un produit d’espaces métriques est supérieure ou égale à la somme des dimensions de Hausdorff.
    Explicitement, pour tous espaces métriques (X,DX) et (Y,DY), on a :
    dimH(X×Y)dimHX+dimHY.
  • Si X est inclus dans n, sa dimension de Hausdorff est inférieure ou égale à n.
  • Si X est une réunion dénombrable de parties, toutes de dimension inférieure ou égale à n, alors dimHXn. En particulier la dimension de Hausdorff d'un espace métrique dénombrable est nulle.
  • Une application lipschitzienne diminue la dimension de Hausdorff.
    Plus généralement, si f:XY est une fonction a-höldérienne entre espaces métriques (avec 0<a<1), alors on a :
    dimH(f(X))1adimH(X).

Modèle:Démonstration

  • La dimension de Hausdorff n'est pas une quantité conservée par homéomorphisme. Par exemple, on peut définir des ensembles de Cantor, homéomorphes entre eux, mais de dimensions différentes. Mais si l'homéomorphisme ainsi que sa réciproque sont tous deux lipschitziens, alors la dimension est conservée (c'est une conséquence évidente du point précédent). De même, si deux métriques sont Lipschitz-équivalentes, alors elles définissent la même dimension de Hausdorff.

Calcul pratique dans un cas particulier classique

Soit X une partie d’un espace vectoriel réel qui vérifie la propriété suivante :

« Il existe n similitudes f1,f2,,fn de rapports r1,r2,,rn telles que f1(X),f2(X),,fn(X) soient disjoints deux à deux et que leur union soit isométrique à X. »

On a alors la relation :

r1d+r2d++rnd=1,

d est la dimension de X.

Cela découle de la propriété suivante des mesures de Hausdorff :

« Pour tout λ positif, Hd(λX)=λdHd(X). »

et de l'invariance par isométrie.

Cela offre un moyen simple de calculer les dimensions de fractales classiques, telles le flocon de Koch, le tapis de Sierpinski, etc.

Exemples

L'ensemble de Cantor.
L'ensemble de Cantor asymétrique.
  • L’ensemble de Cantor est constitué de deux ensembles de Cantor trois fois plus petits ; les deux similitudes sont donc ici des homothéties de rapport 1/3, composées avec des translations.
    Donc 2(13)d=1, ce qui donne : d=ln2ln3=log32.
  • L’ensemble de Cantor asymétrique est constitué de deux ensembles de Cantor, l'un deux fois plus petit, l'autre quatre fois plus petit. Les deux similitudes sont donc ici des homothéties de rapports respectifs 1/2 et 1/4, composées avec des translations.
    Donc (12)d+(14)d=1, ce qui conduit à : d=lnφln2, où φ=1+52 est le nombre d'or.

Exemples

Triangle de Sierpinski, de dimension de Hausdorff ln3ln2..

Notes et références

Modèle:Références

Annexes

Modèle:Autres projets

Bibliographie

Modèle:En Dierk Schleicher, « Hausdorff dimension, its properties and its surprises », Amer. Math. Monthly, vol. 114, juin-juillet 2007, Modèle:P.. Modèle:Arxiv

Articles connexes

Liens externes

Modèle:Palette Modèle:Portail

  1. Modèle:De Felix Hausdorff, « Dimension und äusseres Mass », Math. Ann., vol 79, 1919, Modèle:P. Modèle:Lire en ligne.
  2. 2,0 et 2,1 Modèle:EncycloMath .
  3. Modèle:En Mitsuhiro Shishikura, « Modèle:Lang », Ann. of Math., vol. 147, 1998, p. 225-267 (publication originale de 1991 Stony Brook IMS Preprint, Modèle:Arxiv2).