Hyperopération

En mathématiques, les hyperopérations (ou hyperopérateurs) constituent une suite infinie d'opérations[1]Modèle:,[2]Modèle:,[3] qui prolonge logiquement la suite des opérations arithmétiques élémentaires suivantes :
- addition (n = 1) :
- multiplication (n = 2) :
- exponentiation (n = 3) :
Reuben Goodstein[4] proposa de baptiser les opérations au-delà de l'exponentiation en utilisant des préfixes grecs : tétration (n = 4), pentation (n = 5), hexation (n = 6), etc. L'hyperopération à l'ordre n peut se noter à l'aide d'une flèche de Knuth au rang n – 2. .
La flêche de Knuth au rang m est définie récursivement par : et
Elle peut aussi se définir à l'aide de la règle : . Chacune croît plus vite que la précédente.
Des suites similaires ont historiquement porté diverses appellations, telles que la fonction d'Ackermann[1] (à 3 arguments), la hiérarchie d'Ackermann[5], la hiérarchie de Grzegorczyk[6]Modèle:,[7] (plus générale), la version de Goodstein de la fonction d'Ackermann[4], hyper-n[1]Modèle:,[8]Modèle:,[9]Modèle:,[2]Modèle:,[10].
Définition
La suite d'hyperopérateurs est la suite d'opérations binaires indexée par , définie récursivement comme suit :
(Remarque : pour n = 0, on peut ignorer le premier argument, car alors l'hyperopérateur consiste simplement à incrémenter le second argument d'une unité : succession.)
Pour n = 0, 1, 2, 3, cette définition reproduit les opérations arithmétiques élémentaires, dans l'ordre : succession, addition, multiplication, exponentiation. Par convention donc, les opérations arithmétiques élémentaires sont également à considérer comme des hyperopérateurs.
Pour n ≥ 4, cette suite se poursuit par des nouvelles opérations.
Voici la liste des 7 premières hyperopérations :
| n | Operation | Définition | Noms | Domaines de validité | |
|---|---|---|---|---|---|
| 0 | successeur, « zération » | b réel | |||
| 1 | addition | a et b réels | |||
| 2 | multiplication | a et b réels | |||
| 3 | exponentiation | a et b réels | |||
| 4 | tétration | a > 0, b entier ≥ −1 (extensions proposées) | |||
| 5 | ou | pentation | a et b entiers, a > 0, b ≥ 0 | ||
| 6 | hexation | a et b entiers, a > 0, b ≥ 0 |
Cas spéciaux
Hn(0, b) =
- 0, où n = 2, ou n = 3, b ≥ 1, ou n ≥ 4, b impair (≥ −1)
- 1, où n = 3, b = 0, ou n ≥ 4, b pair (≥ 0)
- b, où n = 1
- b + 1, où n = 0
Hn(a, 0) =
- 0, où n = 2
- 1, où n = 0, ou n ≥ 3
- a, où n = 1
Hn(a, −1) =
- 0, où n = 0, ou n ≥ 4
- a − 1, où n = 1
- −a, où n = 2
- Modèle:Sfrac , où n = 3
Hn(2, 2) =
- 3, où n = 0
- 4, où n ≥ 1, démontrable facilement par récurrence.
Histoire
Une des premières discussions autour des hyperopérateurs fut celle d'Albert Bennet[11] en 1914, qui développa la théorie des hypéropérations commutatives.
12 ans plus tard, Wilhelm Ackermann définit la fonction [12] qui s'approche de la séquence d'hyperopérateurs.
Dans son article de 1947[4], Reuben Goodstein introduit la suite d'opérations maintenant appelée hyperopérations et suggéra les noms de tétration, pentationModèle:Etc. pour les opérations au-delà de l'exponentiation (car ils correspondent aux indices 4, 5, etc. de la suite). C'est une fonction à trois arguments : , la suite des hyperopérations peut être rapprochée de la fonction d'Ackermann . La fonction d'Ackermann originelle utilise la même règle récursive que Goodstein mais diffère d'elle de deux manières : Tout d'abord définit une suite d'opérations partant de l'addition (n = 0) plutôt que de la succession. Ensuite, les conditions initiales pour sont , différent en cela des hyperopérations au-delà de l'exponentiation[13]Modèle:,[14]Modèle:,[15]. La signification du b + 1 dans l'expression qui précède vient que = , où b compte le nombre d'opérateurs plutôt que le nombre d'opérandes a, comme le fait b dans , etc pour les opérations de niveau supérieur (voir la fonction d'Ackermann pour davantage de détails).
Notations
De nombreuses notations ont été développées et sont applicables aux hyperopérateurs.
| Nom | Notation équivalente à | Commentaire |
|---|---|---|
| Notation des flèches de Knuth | Utilisée par Knuth[16] (pour n ≥ 3), et rencontrée dans divers ouvrages[17]Modèle:,[18]. | |
| Notation de Goodstein | Utilisée par Reuben Goodstein[4]. | |
| Fonction d'Ackermann originelle | Utilisée par Wilhelm Ackermann[12]. | |
| Fonction d'Ackermann-Péter | Ceci correspond aux hyperopérations en base 2 (). | |
| Notation de Nambiar | Utilisée par Nambiar[19] | |
| Notation boîte | Utilisée par Rubtsov et Romerio[3]. | |
| Notation exposant | Utilisée par Robert Munafo[9]. | |
| Notation indice | Utilisée par John Donner et Alfred Tarski (pour n ≥ 1)[20]. | |
| Notation crochets | Utilisée sur des forums, pour des raisons de simplicité. | |
| Notation des flèches chaînées de Conway | Utilisée par John Horton Conway (pour n ≥ 3). | |
| Notation de Bowers | Utilisée par Jonathan Bowers (pour n ≥ 1). |
Variante de départ à partir de a
Modèle:Article détailléEn 1928, Wilhelm Ackermann a défini une fonction à 3 arguments qui a progressivement évolué vers une fonction à 2 arguments connue sous le nom de la fonction d'Ackermann. La fonction originelle d'Ackermann était moins similaire aux hyperopérations modernes, car ses conditions initiales commencent avec pour tout n > 2. En outre, l'addition est assignée à n = 0, la multiplication à n = 1 et exponentiation à n = 2, de sorte que les conditions initiales produisent des opérations très différentes de la tétration et des hyperopérations suivantes.
| n | Opération | Commentaire |
|---|---|---|
| 0 | ||
| 1 | ||
| 2 | ||
| 3 | L'itération de cette opération est différente de l'itération de la tétration. | |
| 4 | À ne pas confondre avec la pentation. |
Une autre condition initiale qui a été utilisée est (où la base est constante ), due à Rózsa Péter, qui ne forme pas une hiérarchie d'hyperopérations.
Variante de départ à partir de 0
En 1984, C. W. Clenshaw et F. W. J. Olver ont commencé à discuter de l'utilisation des hyperopérations pour empêcher une erreur d'un ordinateur à virgule flottante[21]. Depuis lors, de nombreux autres auteurs[22]Modèle:,[23]Modèle:,[24] ont eu un intérêt pour l'application des hyperopérations à la représentation à virgule flottante (car Hn(a, b) sont tous définis pour b = –1). Tout en discutant de tétration, Clenshaw Modèle:Et al. Modèle:Pas clair la condition initiale , Modèle:Pas clair encore une autre hiérarchie d'hyperopérations. Tout comme dans la variante précédente, la quatrième opération est très similaire à la tétration, mais est différente de celle-ci.
| n | Opération | Commentaire |
|---|---|---|
| 0 | ||
| 1 | ||
| 2 | ||
| 3 | ||
| 4 | L'itération de cette opération est différente de l'itération de la tétration. | |
| 5 | À ne pas confondre avec Pentation. |
Voir aussi
- Fonction d'Ackermann
- Notation des puissances itérées de Knuth
- Notation des flèches chaînées de Conway
- Hiérarchie de croissance rapide
Références
- ↑ 1,0 1,1 et 1,2 Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméesgeisler - ↑ 2,0 et 2,1 Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméesrobbins - ↑ 3,0 et 3,1 Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméesromerioAck - ↑ 4,0 4,1 4,2 et 4,3 Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméesgoodstein - ↑ Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméesfriedman - ↑ Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméescampagnola - ↑ Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméeswirz - ↑ Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméesmueller - ↑ 9,0 et 9,1 Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméesmunafo - ↑ Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméesgalidakis - ↑ Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméesbennett - ↑ 12,0 et 12,1 Modèle:Article.
- ↑ Erreur de référence : Balise
<ref>incorrecte : aucun texte n’a été fourni pour les références nomméesblack - ↑ Modèle:Lien web.
- ↑ Modèle:Lien web.
- ↑ Modèle:Article.
- ↑ Modèle:Ouvrage.
- ↑ Modèle:Ouvrage.
- ↑ Modèle:Article.
- ↑ Modèle:Article.
- ↑ Modèle:Article.
- ↑ Modèle:Article.
- ↑ Modèle:Lien web.
- ↑ Modèle:Lien web.