Lemme de Zassenhaus
Aller à la navigation
Aller à la recherche
Modèle:Confusion En algèbre, le lemme de Zassenhaus, ou lemme du papillon, est un résultat technique sur le treillis des sous-groupes d'un groupe, qui permet de démontrer le lemme de raffinement de Schreier (utile dans le théorème de Jordan-Hölder), selon lequel deux suites de composition d'un groupe donné possèdent toujours un raffinement commun[1].
Ce lemme fut publié par Hans Zassenhaus en 1934[2].
Notes et références
- ↑ Pour une démonstration, voir par exemple N. Bourbaki, Algèbre I, Chapitres 1 à 3, Paris, 1970, p. I.40-41, ou encore J. Calais, Éléments de théorie des groupes, Paris, 1984, p. 227-228, ou encore Modèle:Lang1, Modèle:3e révisée, Paris, 2004, p. 22-23.
- ↑ Modèle:De H. Zassenhaus, « Zum Satz von Jordan-Hölder-Schreier », Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 10, 1934, p. 187-220, Modèle:DOI. Référence donnée par J. Calais, Éléments de théorie des groupes, Paris, 1984, p. 371.