Loi de Fisher

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Confusion

Modèle:Infobox Distribution statistiques

En théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue[1]Modèle:,[2]Modèle:,[3]. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor.

La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.

Caractérisation

Une variable aléatoire réelle distribuée selon la loi de Fisher peut être construite comme le quotient de deux variables aléatoires indépendantes, Modèle:Formule et Modèle:Formule, distribuées chacune selon une loi du χ² et ajustées pour leurs nombres de degrés de liberté, respectivement Modèle:Formule et Modèle:Formule : Modèle:Indente

La densité de probabilité d'une loi de Fisher, Modèle:Formule, est donnée par Modèle:Indente pour tout réel Modèle:Formule, où Modèle:Formule et Modèle:Formule sont des entiers positifs et Modèle:Formule est la fonction bêta.

La fonction de répartition associée est : Modèle:IndenteModèle:Formule est la fonction bêta incomplète régularisée.

La loi binomiale est liée à la loi de Fisher par la propriété suivante[4]: si X suit une loi binomiale de paramètres n et p, et si k est un entier compris entre 0 et n, alors (Xk)=(Fx) où F suit une loi de Fisher de paramètres d1=2(k+1),d2=2(nk) avec x=nkk+1p1p.

L'espérance, la variance valent respectivement Modèle:Indente pour Modèle:Formule et Modèle:Indente

Généralisation

Une généralisation de la loi de Fisher est la Modèle:Lien.

Lois associées et propriétés

  • Si  XF(d1,d2) alors Y=limd2d1X est distribuée selon une loi du χ² χd12;
  • La loi F(d1,d2) est équivalente à la loi TModèle:2 de Hotelling (d1(d1+d21)/d2)T2(d1,d1+d21);
  • Si XF(d1,d2), alors la loi inverse est aussi une loi de Fisher 1XF(d2,d1);
  • Si Xt(d) est distribuée selon une loi de Student alors X2F(1,d);
  • Si X𝒩(0,1) est distribuée selon une loi normale alors X2F(1,);
  • Si XF(d1,d2) et Y=d1X/d21+d1X/d2 alors YBeta(d1/2,d2/2) est distribuée selon une loi bêta;
  • Si QX(p) est le quantile d'ordre p pour XF(d1,d2) et que QY(p) est le quantile d'ordre p pour YF(d2,d1) alors QX(p)=1/QY(1p).

Table de valeurs des quantiles

Définition du Modèle:95e centile d'une loi de Fisher-Snedecor.

Le tableau suivant fournit les valeurs de certains quantiles de la loi de Fisher pour différents paramètres ν1 et ν2. Pour chaque paramètre, le quantile donné est tel que la probabilité pour qu'une variable suivant une loi de Fisher lui soit inférieur est de

1α

. Ainsi, pour

1α=0,95

et

d1=1

et

d2=3

, si X suit une loi de Fisher avec ces paramètres , on lit dans la table que

P(X10,13)=0,95.
Table de Fisher-Snedecor, 1-α = 0.95
d2
(dén.)
d1 (numérateur)
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 80 100 200 500 1 000
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 248.02 250.10 251.14 251.77 252.20 252.72 253.04 253.68 254.06 254.19
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.45 19.46 19.47 19.48 19.48 19.48 19.49 19.49 19.49 19.49
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.66 8.62 8.59 8.58 8.57 8.56 8.55 8.54 8.53 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.80 5.75 5.72 5.70 5.69 5.67 5.66 5.65 5.64 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.56 4.50 4.46 4.44 4.43 4.41 4.41 4.39 4.37 4.37
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.87 3.81 3.77 3.75 3.74 3.72 3.71 3.69 3.68 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.44 3.38 3.34 3.32 3.30 3.29 3.27 3.25 3.24 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.15 3.08 3.04 3.02 3.01 2.99 2.97 2.95 2.94 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 2.94 2.86 2.83 2.80 2.79 2.77 2.76 2.73 2.72 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.77 2.70 2.66 2.64 2.62 2.60 2.59 2.56 2.55 2.54
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.12 2.04 1.99 1.97 1.95 1.92 1.91 1.88 1.86 1.85
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 1.93 1.84 1.79 1.76 1.74 1.71 1.70 1.66 1.64 1.63
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.84 1.74 1.69 1.66 1.64 1.61 1.59 1.55 1.53 1.52
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.78 1.69 1.63 1.60 1.58 1.54 1.52 1.48 1.46 1.45
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.75 1.65 1.59 1.56 1.53 1.50 1.48 1.44 1.41 1.40
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97 1.72 1.62 1.57 1.53 1.50 1.47 1.45 1.40 1.37 1.36
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.70 1.60 1.54 1.51 1.48 1.45 1.43 1.38 1.35 1.34
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94 1.69 1.59 1.53 1.49 1.46 1.43 1.41 1.36 1.33 1.31
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.68 1.57 1.52 1.48 1.45 1.41 1.39 1.34 1.31 1.30
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.62 1.52 1.46 1.41 1.39 1.35 1.32 1.26 1.22 1.21
300 3.87 3.03 2.63 2.40 2.24 2.13 2.04 1.97 1.91 1.86 1.61 1.50 1.43 1.39 1.36 1.32 1.30 1.23 1.19 1.17
500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.59 1.48 1.42 1.38 1.35 1.30 1.28 1.21 1.16 1.14
1 000 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.58 1.47 1.41 1.36 1.33 1.29 1.26 1.19 1.13 1.11
2 000 3.85 3.00 2.61 2.38 2.22 2.10 2.01 1.94 1.88 1.84 1.58 1.46 1.40 1.36 1.32 1.28 1.25 1.18 1.12 1.09

Voir aussi

Notes et références

Modèle:Références

Liens externes

Modèle:Palette Modèle:Portail