Onde de Stokes

Les ondes de Stokes sont des ondes de gravité rencontrées sur la surface de la mer, des vagues. Elles ont des solutions des équations d'Euler pour un fluide incompressible irrotationnel à surface libre soumis à un champ de gravité qui ont été obtenues par George Gabriel Stokes par la théorie des perturbations en 1847[1]Modèle:,[2] dans le cas d'un milieu de profondeur infinie.
Ondes de gravité
Équations d'Euler pour un fluide incompressible irrotationnel soumis à un champ de gravité
Pour un écoulement incompressible irrotationnel la vitesse dérive d'un potentiel Modèle:Mvar, les équations d'incompressibilité et de quantité de mouvement s'écrivent
où Modèle:Mvar est la masse volumique, Modèle:Mvar la pression, Modèle:Mvar la gravité et Modèle:Mvar l'altitude.
Milieu à surface libre
Dans le cadre d'un problème bidimensionnel, on désigne par Modèle:Math l'altitude de la surface par rapport à sa valeur au repos Modèle:Math.
L'équation ci-dessus s'écrit à la surface
où Modèle:Math est la pression atmosphérique.
Cette surface est décrite par l'équation cinématique
Par ailleurs la condition cinématique au fond Modèle:Math s'écrira
Dans le cas particulier d'un fond plat utilisé par la suite on a
Solutions périodiques

On cherche une solution au système constitué par les équations [1], [2], [3], [4] sous forme d'ondes périodiques progressives
où Modèle:Mvar est la phase de l'onde, Modèle:Mvar le nombre d'onde et Modèle:Mvar la vitesse de phase.
Pour Modèle:Mvar, on utilise un développement en série de Fourier autour de la solution de repos (Modèle:Math)
où Modèle:Mvar est l'amplitude.
Il lui correspond le développement suivant pour Modèle:Mvar[3], suggéré par la solution du problème linéarisé[4]
Pour Modèle:Mvar, on choisit une forme paire de l'amplitude compatible avec la périodicité en Modèle:Mvar (Modèle:Mvar n'est pas nécessairement périodique)
La solution du système limité au second ordre conduit aux résultats suivants[3]
- relation de dispersion
- coefficients du développement pour Modèle:Mvar
- Modèle:Math est le rapport des amplitudes des deux premières composantes de l'onde.
- coefficients du développement pour Modèle:Mvar
- Vitesse de phase
Propriétés des solutions
On a en particulier
- en eau profonde (Modèle:Math
- L'approche est valide pour des hauteurs de vague de faible amplitude devant la longueur d'onde
- où Modèle:Math la longueur d'onde.
- en eau peu profonde Modèle:Math
- où U le nombre d'Ursell.
- Pour une eau peu profonde l'approche est utilisable lorsque
Autres propriétés
- Il existe des solutions pour un développement jusqu'à l'ordre 5[5].
- L'approche peut être utilisée pour des ondes stationnaires[6] ou aléatoires[7]Modèle:,[8].
- Tullio Levi-Civita a démontré la convergence des développements utilisés pour des ondes de faible amplitude et un milieu de profondeur infinie[9]. Ce résultat a été étendu aux milieux à profondeur finie par Dirk Jan Struik[10].
- Thomas Brooke Benjamin et Jim E. Feir on montré l'instabilité de la solution pour les fortes profondeurs[11]. L'instabilité de Benjamin-Feir peut conduire à la formation d'une vague scélérate[12].