Solénoïde (mathématiques)
Modèle:Autre4 Modèle:À sourcer
En mathématiques, pour un nombre premier donné p, le solénoïde p-adique est le groupe topologique défini comme la limite projective du système
où i parcourt les entiers naturels, et chaque Si est un cercle, et qi enroule le cercle p fois autour du cercle .
Le solénoïde est l'exemple standard d'un espace ayant un mauvais comportement vis-à-vis des diverses théories homologiques, contrairement aux complexes simpliciaux. Par exemple, en homologie de Čech, on peut construire une longue suite homologique non exacte en utilisant le solénoïde. Dans les théories homologiques à la Steenrod, le 0-ème groupe d'homologie du solénoïde peut avoir une structure assez compliquée, bien que le solénoïde soit un espace connexe.

Plongement dans RModèle:3
Un plongement du solénoïde p-adique dans RModèle:3 peut être construit de la manière suivante. Prendre un tore solide T dans RModèle:3 et choisir un plongement α: T → T tel que l'action de α sur le groupe fondamental de T soit la multiplication par p; autrement dit, α envoie le tore solide T sur son intérieur de sorte que lorsqu’on tourne une fois autour de l'axe de T à la source, on tourne p fois autour de l'axe de T au but. Alors, l'Modèle:Lien de α, c’est-à-dire,
l'intersection (dans RModèle:3) des tores de plus en plus petits T, αT, α(αT), etc., est un solénoïde p-adique à l'intérieur de T, par conséquent dans RModèle:3.
En effet, cet ensemble est la limite projective du système constitué d'une infinité de copies de T avec les applications α entre elles, et ce système est topologiquement équivalent au système projectif (Si, q i) défini ci-dessus.
Cette construction montre comment le solénoïde p-adique apparaît dans l'étude des systèmes dynamiques sur RModèle:3 (puisque α peut apparaître comme la restriction d'une application continue de RModèle:3 dans RModèle:3). C'est un exemple d'un continu indécomposable non trivial.