Alexander Merkurjev

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Infobox Alexander Merkurjev (en Modèle:Lang-ru, Modèle:Lang), né le Modèle:Date de naissance-[1], est un mathématicien américain d’origine russe qui a contribué à de grandes avancées dans le domaine de l’algèbre. Merkurjev est actuellement professeur à l’Université de Californie à Los Angeles.

Récompenses et distinctions

En 1982 Merkurjev remporte le Prix du Jeune Mathématicien de la Saint Petersburg Mathematical Society pour son travail sur la K-théorie algébrique[2]. En 1986 il est invité comme conférencier au Congrès international des mathématiciens à Berkeley en Californie, son sujet était "Milnor K-theory and Galois cohomology"[3]. En 1995 il remporte le Prix Humboldt, un prix international décerné aux chercheurs émérites. En 1996 Merkurjev donne une séance plénière au deuxième European Congress of Mathematics à Budapest en Hongrie[4]. En 2012 il est lauréat du Prix Frank Nelson Cole en algèbre pour son travail sur la dimension essentielle des groupes[5].

En 2012 il devient membre de l’American Mathematical Society[6].

Œuvre

Merkurjev se concentre sur les groupes algébriques, les formes quadratiques, la Cohomologie galoisienne, la K-théorie algébrique et l’algèbre simple centrale. Au début des années 1980, Merkurjev prouve un résultat fondamental à propos de la structure de l’algèbre simple centrale de l'exposant d'un groupe divisé 2, relié à la 2-torsion d’un Groupe de Brauer et de la K-théorie de Milnor[7]. Avec l’aide de Suslin ce résultat fut étendu à des torsions plus élevées connu sous le nom de conjecture de Bloch-Kato, prouvé de manière générale par Rost et Voevodsky.

À la fin des années 1990 Merkurjev donne l’approche la plus générale à la notion de dimension essentielle, introduite par Buhler et Reichstein, il fait de grandes avancées dans le domaine. Plus précisément Merkurjev a déterminé la p-dimension essentielle de l’algèbre centrale simple de degré p2 (avec p commençant à 1) et, en association avec Karpenko, la dimension essentielle de p-groupes finis[8]Modèle:,[9].

Bibliographie

Livres

Références

Modèle:Références

Modèle:Traduction/Référence

Liens externes

Modèle:Liens

Modèle:Portail