Factorisation aurifeuillienne

De testwiki
Aller à la navigation Aller à la recherche

En théorie des nombres, une factorisation aurifeuillienne, nommée d'après Léon-François-Antoine Aurifeuille, est un cas particulier de factorisation algébrique d'entiers provenant d'une factorisation (accidentelle) d'un polynôme cyclotomique[1].

Définition

Les polynômes cyclotomiques eux-mêmes sont irréductibles (dans [X]), mais il peut néanmoins arriver qu'on dispose de factorisations systématiques de leurs valeurs sur certains entiers. On appelle factorisation aurifeuillienne du polynôme cyclotomique P une formule de la forme P(bcn+d)=Qn(b)Rn(b) (où b est un entier fixé, la base, et Q et R sont des polynômes non constants), valable pour tout n. Une telle factorisation provient en général de ce que le polynôme bdXn1 possède des facteurs autres que ceux donnés par les polynômes cyclotomiques (en 2004, Andrew Granville a démontré qu'avec une définition convenablement précisée, il n'en existait pas d'autres[1]). Les exemples qui suivent illustrent ce phénomène.

Exemples

  • Les nombres de la forme 24k+2+1 peuvent s'écrire[2] :
24k+2+1=(22k+12k+1+1)(22k+1+2k+1+1).
  • De même, puisque Φ3(X)=X2X+1, on a Φ3(3x2)=9x43x2+1=(3x2+1)29x2 ; prenant b=x=3, on en déduit la factorisation aurifeuillienne
36k+3+1=(32k+1+1)(32k+13k+1+1)(32k+1+3k+1+1).
  • Les nombres de la forme bn1 ou Φn(b), avec b=s2t et t sans facteur carré ont une factorisation aurifeuillienne si et seulement si l'une des deux conditions suivantes est remplie[1] :
    • t1(mod4) et nt(mod2t)
    • t2,3(mod4) et n2t(mod4t).
  • Les formules suivantes donnent les facteurs aurifeuilliens de bn ± 1 obtenus par le projet Cunningham pour les bases b ≤ 24 (qui ne sont pas des puissances d'autres bases) comme produits de trois facteurs F, L et M[3], avec L = A - B et M = A + B : nombre = F * (A - B) * (A + B) = F * L * M
b Nombre F A B
2 24k + 2 + 1 1 22k + 1 + 1 2k + 1
3 36k + 3 + 1 32k + 1 + 1 32k + 1 + 1 3k + 1
5 510k + 5 - 1 52k + 1 - 1 54k + 2 + 3(52k + 1) + 1 53k + 2 + 5k + 1
6 612k + 6 + 1 64k + 2 + 1 64k + 2 + 3(62k + 1) + 1 63k + 2 + 6k + 1
7 714k + 7 + 1 72k + 1 + 1 76k + 3 + 3(74k + 2) + 3(72k + 1) + 1 75k + 3 + 73k + 2 + 7k + 1
10 1020k + 10 + 1 104k + 2 + 1 108k + 4 + 5(106k + 3) + 7(104k + 2)
+ 5(102k + 1) + 1
107k + 4 + 2(105k + 3) + 2(103k + 2)
+ 10k + 1
11 1122k + 11 + 1 112k + 1 + 1 1110k + 5 + 5(118k + 4) - 116k + 3
- 114k + 2 + 5(112k + 1) + 1
119k + 5 + 117k + 4 - 115k + 3
+ 113k + 2 + 11k + 1
12 126k + 3 + 1 122k + 1 + 1 122k + 1 + 1 6(12k)
13 1326k + 13 - 1 132k + 1 - 1 1312k + 6 + 7(1310k + 5) + 15(138k + 4)
+ 19(136k + 3) + 15(134k + 2) + 7(132k + 1) + 1
1311k + 6 + 3(139k + 5) + 5(137k + 4)
+ 5(135k + 3) + 3(133k + 2) + 13k + 1
14 1428k + 14 + 1 144k + 2 + 1 1412k + 6 + 7(1410k + 5) + 3(148k + 4)
- 7(146k + 3) + 3(144k + 2) + 7(142k + 1) + 1
1411k + 6 + 2(149k + 5) - 147k + 4
- 145k + 3 + 2(143k + 2) + 14k + 1
15 1530k + 15 + 1 1514k + 7 - 1512k + 6 + 1510k + 5
+ 154k + 2 - 152k + 1 + 1
158k + 4 + 8(156k + 3) + 13(154k + 2)
+ 8(152k + 1) + 1
157k + 4 + 3(155k + 3) + 3(153k + 2)
+ 15k + 1
17 1734k + 17 - 1 172k + 1 - 1 1716k + 8 + 9(1714k + 7) + 11(1712k + 6)
- 5(1710k + 5) - 15(178k + 4) - 5(176k + 3)
+ 11(174k + 2) + 9(172k + 1) + 1
1715k + 8 + 3(1713k + 7) + 1711k + 6
- 3(179k + 5) - 3(177k + 4) + 175k + 3
+ 3(173k + 2) + 17k + 1
18 184k + 2 + 1 1 182k + 1 + 1 6(18k)
19 1938k + 19 + 1 192k + 1 + 1 1918k + 9 + 9(1916k + 8) + 17(1914k + 7)
+ 27(1912k + 6) + 31(1910k + 5) + 31(198k + 4)
+ 27(196k + 3) + 17(194k + 2) + 9(192k + 1) + 1
1917k + 9 + 3(1915k + 8) + 5(1913k + 7)
+ 7(1911k + 6) + 7(199k + 5) + 7(197k + 4)
+ 5(195k + 3) + 3(193k + 2) + 19k + 1
20 2010k + 5 - 1 202k + 1 - 1 204k + 2 + 3(202k + 1) + 1 10(203k + 1) + 10(20k)
21 2142k + 21 - 1 2118k + 9 + 2116k + 8 + 2114k + 7
- 214k + 2 - 212k + 1 - 1
2112k + 6 + 10(2110k + 5) + 13(218k + 4)
+ 7(216k + 3) + 13(214k + 2) + 10(212k + 1) + 1
2111k + 6 + 3(219k + 5) + 2(217k + 4)
+ 2(215k + 3) + 3(213k + 2) + 21k + 1
22 2244k + 22 + 1 224k + 2 + 1 2220k + 10 + 11(2218k + 9) + 27(2216k + 8)
+ 33(2214k + 7) + 21(2212k + 6) + 11(2210k + 5)
+ 21(228k + 4) + 33(226k + 3) + 27(224k + 2)
+ 11(222k + 1) + 1
2219k + 10 + 4(2217k + 9) + 7(2215k + 8)
+ 6(2213k + 7) + 3(2211k + 6) + 3(229k + 5)
+ 6(227k + 4) + 7(225k + 3) + 4(223k + 2)
+ 22k + 1
23 2346k + 23 + 1 232k + 1 + 1 2322k + 11 + 11(2320k + 10) + 9(2318k + 9)
- 19(2316k + 8) - 15(2314k + 7) + 25(2312k + 6)
+ 25(2310k + 5) - 15(238k + 4) - 19(236k + 3)
+ 9(234k + 2) + 11(232k + 1) + 1
2321k + 11 + 3(2319k + 10) - 2317k + 9
- 5(2315k + 8) + 2313k + 7 + 7(2311k + 6)
+ 239k + 5 - 5(237k + 4) - 235k + 3
+ 3(233k + 2) + 23k + 1
24 2412k + 6 + 1 244k + 2 + 1 244k + 2 + 3(242k + 1) + 1 12(243k + 1) + 12(24k)
  • La factorisation suivante des nombres de Lucas L10k+5 peut aussi être considérée comme aurifeuillienne :
L10k+5=L2k+1(5F2k+125F2k+1+1)(5F2k+12+5F2k+1+1)
Ln est le n-ème nombre de Lucas, et Fn est le n-ème nombre de FibonacciModèle:Refsou.

Historique

En 1871, Aurifeuille découvrit la factorisation de 24k+2+1 pour k = 14[4] Modèle:,[5]

258+1=(229+215+1)(229215+1)=536838145536903681.

Le second facteur est premier, et l'autre vaut 5×107367629, ce dernier nombre étant premier[5]. Cette factorisation (qui avait échappé à Fortuné Landry) est un cas particulier de l'identité de Sophie Germain 4x4+y4=(2x2+2xy+y2)(2x22xy+y2), mais en 1878, Édouard Lucas signala que Aurifeuille avait obtenu des factorisations analogues pour tous les b premiers[1]

Références

Modèle:Traduction/Référence

Modèle:Reflist

Liens externes

Modèle:Portail

  1. 1,0 1,1 1,2 et 1,3 Modèle:Article
  2. C'est un cas particulier de lModèle:'identité de Sophie Germain
  3. Modèle:Lien web ; après les tables 2LM, 3+, 5-, 7+, 10+, 11+ et 12+ se trouvent des formules détaillant les factorisations.
  4. Modèle:MathWorld
  5. 5,0 et 5,1 Modèle:En Integer Arithmetic, Number Theory – Aurifeuillian Factorizations, Numericana