Foncteur représentable

De testwiki
Aller à la navigation Aller à la recherche

On rencontre en mathématiques de nombreuses propriétés universelles. Le formalisme des catégories permet d'exprimer ces propriétés de façon très simple.

Définition

Soit 𝒞 une catégorie localement petite et F un foncteur contravariant, respectivement covariant, de 𝒞 dans Ens (catégorie des ensembles). On dit que F est représentable s'il existe un objet X de 𝒞 tel que F soit isomorphe au foncteur X^=Hom(.,X):YHom(Y,X), respectivement au foncteur Hom(X,.):YHom(X,Y).

Les transformations naturelles de X^ dans F correspondent bijectivement aux éléments de F(X).

Ainsi, on dit que le foncteur F est représenté par (X,ζ) (où ζ est un élément de F(X)) lorsque ζ^:X^F est un isomorphisme de foncteur.

Foncteurs covariants représentables

  • Somme

Soit 𝒞 une catégorie, A et B deux objets de 𝒞. On considère le foncteur de 𝒞 dans Ens qui à X associe Hom(A,X)×Hom(B,X). Représenter ce foncteur correspond à la propriété universelle de la somme.

Soit I un ensemble et A un anneau commutatif. Le foncteur de la catégorie des A-module dans Ens (respectivement catégorie des groupes, des groupes commutatifs, des monoîdes, des A-algèbre) qui à un A-module F (respectivement toute la ribambelle) associe FI est représentable. On obtient le A-module libre A(I), respectivement, le groupe libre de base I, le groupe commutatif A(I), le monoïde libre des mots basé sur l'alphabet I, l'algèbre des polynômes dont I est l'ensemble des indéterminées.

  • Complété

Soit E un espace métrique. Le foncteur de la catégorie des espaces métriques complets dans Ens qui à un espace métrique complet X associe Hom(E,X) est représenté par le complété de E.

Soit E un espace topologique. Le foncteur de la catégorie des espaces topologiques compacts dans Ens qui à un espace compact X associe Hom(E,X) est représenté par le compactifié de Stone-Čech de E.

Soit A un anneau commutatif unitaire et E et F deux A-modules. Le produit tensoriel de E et F représente le foncteur qui à un A-module G associe l'ensemble des applications bilinéaires de E×F dans G.

Foncteurs contravariants représentables

Soit 𝒞 une catégorie, A et B deux objets de 𝒞. On considère le foncteur de 𝒞 dans Ens qui à X associe Hom(X,A)×Hom(X,B). Représenter ce foncteur correspond à la propriété universelle du produit.

Soit X un espace topologique et Y une partie de X. La topologie induite par X sur Y muni de l'injection canonique représente le foncteur de Top dans Ens qui à A associe l'ensemble des applications continues de A dans X dont l'image est incluse dans Y.

Soit X un espace topologique localement compact et Y un espace topologique. Le foncteur THomTop(T×X,Y) est représenté par l'espace des fonctions continues de X dans Y muni de la topologie compacte-ouverte.

Référence

Modèle:Douady1

Modèle:Palette

Modèle:Portail