Matrice stochastique

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Confusion

En mathématiques, une matrice stochastique (aussi appelée matrice de Markov) est une matrice carrée (finie ou infinie) dont chaque élément est un réel positif et dont la somme des éléments de chaque ligne vaut 1. Cela correspond, en théorie des probabilités, à la matrice de transition d'une chaîne de Markov.

Définitions

Une matrice Mn() est dite stochastique si toutes ses entrées sont positives (ou nulles) et si, pour tout i=1,...,n, on a j=1nmij=1, c'est-à-dire que la somme des coordonnées de chaque ligne vaut 1[1].

Une matrice stochastique est dite régulière s'il existe un entier k>0 tel que la matrice Mk ne contient que des réels strictement positifs.

Une matrice est dite bistochastique (ou doublement stochastique) si la somme des éléments de chaque ligne et de chaque colonne vaut 1, autrement si M et sa transposée Mt sont stochastiques.

Propriétés

Une autre caractérisation des matrices stochastiques est donnée par :

  • M est une matrice stochastique si et seulement si M0 (ses coefficients sont positifs ou nuls) et Me=e, où e désigne le vecteur de n dont toutes les coordonnées valent 1.
  • M est bistochastique si M0, Me=e et e*M=e*, où e* est le vecteur transposé de e.

D'après la propriété précédente, puisque 1 est une valeur propre de M avec comme vecteur propre à droite le vecteur colonne dont toutes les coordonnées valent 1 :

  • Si M est une matrice stochastique, on appelle vecteur stable pour M un vecteur ligne non nul v tel que vM=v , autrement dit : un vecteur propre à gauche pour la valeur propre 1 (et M possède toujours au moins un vecteur stable).

Une caractérisation du rayon spectral d'une matrice stochastique est donnée par :

  • Si M est une matrice stochastique, alors ||Mx||||x|| pour tout xn, de sorte que le rayon spectral ρ(M)1. Or, comme Me=e, on a en fait ρ(M)=1. Ainsi, le rayon spectral d'une matrice stochastique vaut précisément 1.

D'autres résultats sont donnés par :

Exemple

La matrice suivante est stochastique mais pas bistochastique :

M=(0,50,30,20,20,800,30,30,4).

Le vecteur (361) est stable pour M.

La matrice stochastique M est régulière car

M2=(0,370,450,180,260,700,040,330,450,22).

Théorème des matrices stochastiques

Modèle:Voir Le théorème des matrices stochastiques stipule que, si A est une matrice stochastique régulière, alors

De plus, si x0 est une loi initiale quelconque (i.e. est un vecteur à coordonnées positives ou nulles et de somme 1), et si xk+1 = xkA pour k = 0, 1, 2, … alors la chaîne de Markov {xk} converge vers t quand k. C’est-à-dire :

limk𝐱0Ak=t.

Quelques autres résultats

Modèle:Voir Le rôle des matrices stochastiques est important, notamment dans l'étude des chaînes de Markov. Une caractéristique importante des matrices doublement stochastiques (ou bistochastiques) est fourni par les matrices de permutation P(σ), σ𝒮n, dont les coefficients valent pij=δσ(i)j, avec δ le symbole de Kronecker.

Le théorème de Birkhoff montre ce rôle central qu'ont les matrices de permutations dans la caractérisation des matrices bistochastiques : Modèle:Théorème

Une conséquence de théorème est donnée par le résultat suivant[2] : Modèle:Théorème

Deux autres résultats sur les matrices bistochastiques utilisent la relation décrite par le symbole , défini par : Soient a=(a1,...,an) et b=(b1,...,bn) deux suites de n nombres réels. On dit que b majore a, et on note ab si :

  • a1+...+akb1+...+bk pour tout k=1,...,n1 ;
  • a1+...+an=b1+...+bn.

Il s'agit d'une relation d'ordre partielle.

Les deux théorèmes sont : Modèle:Théorème

Modèle:Théorème

Voir aussi

Bibliographie

Modèle:Ouvrage.Modèle:Plume

Sur l'application des matrices de transition de Markov en musicologie[3]Modèle:,[4]

Notes et références

  1. Certains auteurs parlent de matrice stochastique à droite, la transposée d'une telle matrice (dont la somme des coordonnées de chaque colonne vaut 1) est alors dite stochastique à gauche.
  2. Modèle:Article
  3. Modèle:Lien web
  4. Modèle:Lien web

Articles connexes


Modèle:Palette Modèle:Portail