Nombre dodécagonal
Aller à la navigation
Aller à la recherche

Un nombre dodécagonal est un nombre figuré polygonal qui peut être représenté graphiquement par des points répartis dans un dodécagone. Le nombre dodécagonal d'ordre est donné par la formule [1]Modèle:,[2] :
- .
Les premiers nombres dodécagonaux sont :
- 0, 1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, 924, 1065, 1216, 1377, 1548, 1729, 1920, 2121, 233 2, 2553, 2784, 3025, 3276, 3537, 3808, 4089, 4380, 4681, 4992, 5313, 5644, 5985, 6336, 6697, 7068, 7449, 7840, 8241, 8652, 9073, 9504, 9 945... Modèle:OEIS
Obtention de ces nombres
Pour points sur chaque côté du polygone extérieur, on ajoute à l'étape : points sur les sommets et points à l'intérieur des côtés, d'où .
Donc .
Propriétés
- est la somme des premiers entiers naturels congrus à 1 modulo 10.
- est congru à modulo 10 et a donc même chiffre des unités que lui.
- est congru à modulo 2 donc a même parité que lui.
- est la somme du nombre carré d'ordre et de huit nombres triangulaires d'ordre : .
- est la somme du nombre hexagonal d'ordre et de six nombres triangulaires d'ordre : .
- est la somme des nombres impairs de à .
- D'après le théorème des nombres polygonaux de Fermat, tout entier naturel est la somme d'au plus 12 nombres dodécagonaux.