Courbe quartique

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Ébauche En géométrie, une courbe quartique est une courbe algébrique de degré quatre.

Elle peut être définie par une équation de degré quatre :

Ax4+By4+Cx3y+Dx2y2+Exy3+Fx3+Gy3+Hx2y+Ixy2+Jx2+Ky2+Lxy+Mx+Ny+P=0.

Cette équation a quinze constantes. Cependant, elle peut être multipliée par une constante non nulle sans changer la courbe. De ce fait, l'espace des courbes quartiques peut être identifié avec l'espace projectif réel 14. Il en résulte qu'il y a exactement une seule courbe quartique qui passe par un ensemble de quatorze points distincts en position générale, puisqu'une quartique a 14 degrés de liberté.

Une courbe quartique peut avoir un maximum de :

Un exemple de courbe quartique (gauche) est la fenêtre de Viviani.

On distingue plusieurs familles de quartiques en fonction du genre.

  • Si le genre = 0, alors ce sont les quartiques rationnelles
  • Si le genre = 1, alors ce sont les quartiques elliptiques
  • Si le genre = 2, alors ce sont les quartiques du diable
  • Si le genre = 3, alors ce sont les quartiques de genre trois

Exemples

Liens externes

Modèle:Traduction/Référence

Modèle:Portail