Cohomologie de De Rham
En mathématiques, la cohomologie de De Rham est un outil de topologie différentielle, c'est-à-dire adapté à l'étude des variétés différentielles. Il s'agit d'une théorie cohomologique fondée sur des propriétés algébriques des espaces de formes différentielles sur la variété. Elle porte le nom du mathématicien Georges de Rham.
Le Modèle:Lien affirme que le morphisme naturel, de la cohomologie de De Rham d'une variété différentielle vers sa cohomologie singulière[1] à coefficients réels, est bijectif[2].
Définitions
Soit M une variété différentielle, décrivons l'Modèle:Lien (Ω*(M), d) de ses formes différentielles. Pour tout entier naturel p :
- est l'espace des formes différentielles de degré p sur M.
- est l'opérateur de différentiation extérieure sur les formes différentielles de degré p.
On note dω la dérivée extérieure de ω quand on ne veut pas préciser son degré ; il faut alors sous-entendre dModèle:Expω où p est le degré de ω.
L'étude de la cohomologie de De Rham est l'étude de la "conservation" de certaines propriétés algébriques le long de la chaîne:
dans un certain sens expliqué plus bas.
Formes fermées, formes exactes
Lorsque (i.e. ), on dit que la forme différentielle est fermée.
Lorsqu’il existe une forme telle que (i.e. ), on dit que la forme différentielle est exacte.
Théorie locale (lemme de Poincaré)
On a pour tout p la relation dModèle:Exp ∘ dModèle:Exp = 0, souvent abrégé en . On en déduit le :
Le lemme de Poincaré permet de montrer que la réciproque est vraie localement :
Plus précisément, pour toute forme fermée définie sur un ouvert U de M contenant x, il existe un voisinage de x contenu dans U sur lequel la restriction de la forme est exacte.
En effet, si M ⊂ ℝModèle:Exp est un ouvert étoilé, ou un ouvert difféomorphe à un ouvert étoilé, un calcul montre que toute forme fermée est exacte. Maintenant si M est quelconque, tout point admet un voisinage difféomorphe à une boule et on est ramené au cas précédent.
Théorie globale
Un lemme de Poincaré global n'existe pas. Par exemple, sur le plan ℝModèle:2 privé de l'origine, la forme est fermée, mais non exacte.
Dans le cas général, le p-ième groupe de cohomologie de De Rham mesure l'obstruction pour une forme fermée à être exacte.
Notations
Pour tout entier naturel p, on note :
- l'espace des p-formes fermées.
- l'espace des p-formes exactes.
Comme , on a , donc :
l'espace des formes exactes est un sous-espace des formes fermées.
Définition : groupes de cohomologie (de De Rham)
On définit l'algèbre graduée H*(M) — la cohomologie de De Rham de M — comme l'homologie du complexe de cochaînes de De Rham associé à l'algèbre différentielle graduée (Ω*(M), d).
Sa composante de degré p est donc l'espace vectoriel quotient de ZModèle:Exp(M) par BModèle:Exp(M) :
c'est-à-dire l'espace des p-formes fermées modulo le sous-espace des p-formes exactes.
HModèle:Exp(M) = 0 si p < 0 ou si p est strictement supérieur à la dimension de M.
Si M est compacte, chaque HModèle:Exp(M) est de dimension finie[3].
La dimension de HModèle:Exp(M) s'appelle le p-ième nombre de Betti (réel), noté bModèle:Ind(M).
Toute application différentiable f : M → N entre deux variétés induit un morphisme d'algèbres différentielles graduées Ω(f) : Ω*(N) → Ω*(M) donc un morphisme d'algèbres graduées f* : H*(N) → H*(M). On vérifie facilement que H* est un foncteur (contravariant).
Invariance par homotopie
Si deux applications différentiables f, g : M → N sont homotopes, elles le sont différentiablement[4]. On parvient alors à construire[5]Modèle:,[6]Modèle:,[7] un opérateur L : Ω(N) → Ω(M) de degré –1 tel que Ω(g) – Ω(f) = d∘L + L∘d, ce qui prouve que g* = f*.
Toute application continue de M dans N est homotope à une application différentiable[8]Modèle:,[9]. Elle détermine donc encore un morphisme de H*(N) dans H*(M)[10].
Exemples
- HModèle:Exp(M) ≃ ℝModèle:Exp, où c désigne le nombre de composantes connexes de M.
- Si M est une variété lisse compacte connexe et orientable de dimension n, alors HModèle:Exp(M) est de dimension 1.
Un isomorphisme explicite est donné par l'intégration des formes différentielles
de degré maximum : une orientation de M étant donnée, l'application
de dans R est nulle sur les formes exactes d'après le théorème de Stokes. Elle passe donc au quotient en une application de HModèle:Exp(M) dans R, et l'on démontre[11] qu'on obtient ainsi un isomorphisme.
- Si M n'est pas orientable ou n'est pas compacte (les autres hypothèses restant les mêmes), HModèle:Exp(M) = 0.
- HModèle:Exp(SModèle:Exp) = 0 pour 0 < k < n.
Théorème de Hodge-de Rham
Un élément de HModèle:Exp(M) est une classe d'équivalence de formes différentielles de degré p, qui n'admet pas a priori de représentant privilégié. La situation change si M est munie d'une métrique riemannienne g. On peut alors définir un opérateur de divergence
Soit alors
Ces formes sont dites harmoniques.
Le théorème de Hodge-de Rham[12] assure que si M est compacte est isomorphe à HModèle:Exp(M).
Exemples
- Si G est un groupe de Lie compact muni d'une métrique riemannienne bi-invariante, les formes harmoniques sont les formes différentielles bi-invariantes. En particulier, .
- Soit S une surface de Riemann compacte. La donnée de la structure complexe équivaut à celle d'une classe de métriques riemanniennes conformes, et les formes harmoniques de degré 1 ne dépendent que de la structure conforme. Ce sont les parties réelles des formes différentielles holomorphes de degré 1. Ainsi où est le genre de S.
Notes et références
Voir aussi
Lien externe
Oscar Burlet, Souvenirs de Georges de Rham
Bibliographie
Ouvrages de mathématiques
- Modèle:Bredon1
- Modèle:Ouvrage
- Modèle:En Lars Gårding, Modèle:Langue, Springer Verlag, New York, Heidelberg, Berlin, 1977 Modèle:ISBN, Modèle:P.
- Modèle:Ouvrage
Ouvrages de physique théorique
- Modèle:En Yvonne Choquet-Bruhat et Cécile DeWitt-Morette, Modèle:Langue, North-Holland, 1989 Modèle:ISBN
- Modèle:En Modèle:Lien, Modèle:Langue, Cambridge University Press, 2004, Modèle:2e éd. révisée et illustrée Modèle:ISBN
- Modèle:En Mikio Nakahara, Modèle:Langue, Modèle:Langue, 2003, Modèle:2e éd. illustrée Modèle:ISBN
- Modèle:En Charles Nash et Siddhartha Sen, Modèle:Langue, Academic Press, 1983 Modèle:ISBN
- ↑ Plus précisément : la cohomologie singulière de l'espace topologique sous-jacent, supposé ici paracompact.
- ↑ Modèle:Chapitre, Modèle:Citation.
- ↑ Modèle:Godbillon1, p. 189, th. 2.6.
- ↑ Modèle:Harvsp, prop. 4.11.
- ↑ Modèle:Harvsp (th. 2.5) : L = K∘Ω(H), où H : M×ℝ → N est une homotopie différentiable de f à g et K : ΩModèle:Exp(M×ℝ) → ΩModèle:Exp(M) est l'intégration de 0 à 1 le long des fibres de la projection M×ℝ → M.
- ↑ Modèle:Ouvrage.
- ↑ Modèle:Lien web.
- ↑ Modèle:Harvsp, th. 4.5 et prop. 4.6.
- ↑ Modèle:Ouvrage.
- ↑ Modèle:Godbillon1, Modèle:P..
- ↑ Modèle:Lafontaine1, chapitre 7.
- ↑ Modèle:Ouvrage.