Matrice élémentaire

De testwiki
Aller à la navigation Aller à la recherche

Une matrice est dite élémentaire lorsqu'elle est obtenue en appliquant une seule opération élémentaire sur les lignes de la matrice identité[1].

Les opérations élémentaires sur les lignes d'une matrice sont les suivantes[2] :

Exemples

Opération effectuée sur la matrice identité Modèle:Math type de matrice
échanger lignes 1 et 2 (010100001) matrice de permutation
multiplier ligne n°3 par 5 (100010005) matrice de dilatation
ajouter 5×ligne n°2 à la ligne n°3 (100010051) matrice de transvection

Propriétés

Un examen direct des trois types montre que toute matrice élémentaire est inversible et de transposée élémentaire.

Multiplier à gauche une matrice A par une matrice élémentaire résultant d'une opération élémentaire sur les lignes de la matrice identité revient à effectuer l'opération correspondante sur les lignes de A[3] (on retrouve ainsi que toute matrice élémentaire est inversible : son inverse correspond à l'opération élémentaire inverse).

En notant M la matrice élémentaire associée à une certaine opération élémentaire sur les lignes, effectuer sur A l'opération élémentaire correspondante sur les colonnes revient à multiplier A à droite par la transposée de M[3].

Remarque

Le premier type d'opérations élémentaires (permutation de deux lignes ou colonnes) est en fait superflu car il peut s'obtenir à partir des deux autres[4]. En effet,

Modèle:Retrait

Notes et références

Articles connexes

Modèle:Palette Modèle:Portail