Valuation
En mathématiques, plus particulièrement en géométrie algébrique et en théorie des nombres, une valuation, ou valuation de Krull, est une mesure de la multiplicité. La notion est une généralisation de la notion de degré ou d'ordre d'annulation d'un polynôme formel en algèbre, du degré de divisibilité par un nombre premier en théorie des nombres, de l'ordre d'un pôle en analyse complexe ou du nombre de points de contact entre deux variétés algébriques en géométrie algébrique.
Définition
On appelle valuation une application d'un anneau commutatif unitaire non nul vers un groupe abélien totalement ordonné union l'infini
qui vérifie les propriétés suivantes :
- ;
- ;
- , ce qui est relié à l'inégalité triangulaire dans les espaces métriques.
Notes :
- On utilise les conventions classiques et pour tout .
- Certains auteurs se restreignent aux valuations sur un corps commutatif.
- Que A soit ou non un corps, v est un morphisme de monoïdes de (A*, ×) dans (G, +).
- Lorsque A est un corps, v est donc un morphisme de groupes de (A*, ×) dans (G, +), si bien que v(A*) est un sous-groupe de G.
- Lorsque A est un corps, on demande parfois à v d'être surjective, mais on peut toujours se ramener à cette situation en remplaçant G par v(A*).
Deux valuations Modèle:Math et Modèle:Math sur A sont dites équivalentes s'il existe un isomorphisme de demi-groupes ordonnés
Valuations discrètes
Modèle:Voir Lorsque le groupe G est ℤ, Modèle:Math est dite valuation de Dedekind ou valuation discrète. Deux valuations discrètes Modèle:Math et Modèle:Math sur Modèle:Math sont équivalentes si et seulement si elles sont proportionnelles, c'est-à-dire s'il existe un rationnel Modèle:Math non nul tel que
Les classes d'équivalence des valuations discrètes sur un anneau sont appelées ses places.
Valuation triviale
La seule valuation discrète correspondant au groupe trivial est appelée la valuation triviale :
Propriétés
Propriétés générales
Soit Modèle:Math un anneau commutatif unitaire non nul muni d'une valuation Modèle:Math. Alors :
- ;
- ;
- ;
- Modèle:Math est intègre ;
- il existe une unique valuation Modèle:Math sur le corps des fractions Modèle:Math qui prolonge Modèle:Math :
- .
Valuations discrètes sur le corps des rationnels
Les places de ℚ, c'est-à-dire les valuations discrètes sur ℚ à un facteur de proportionnalité près, sont celles de :
- la valuation triviale ;
- les valuations p-adiques Modèle:Infra.
Valeur absolue associée
Soit Modèle:Math une valuation sur Modèle:Math à valeurs réelles, et Modèle:Math ∈ ]0, 1[. On associe à Modèle:Math une valeur absolue ultramétrique (la notion de valeur absolue est usuellement définie sur un corps, mais parfaitement définissable sur un anneau quelconque, et elle induit toujours une distance sur son ensemble sous-jacent; voir infra) | ∙ |Modèle:Ind en posant
- .
La distance associée à cette valeur absolue () fait de Modèle:Math un anneau topologique dont la topologie se déduit d'une distance ultramétrique.
Si Modèle:Math est un corps alors est un corps valué donc son anneau complété (pour ) est un corps valué complet. Par prolongement des inégalités, la valeur absolue sur ce complété est encore ultramétrique. Par exemple, les corps [[#Valuation p-adique|ℚModèle:Ind]] et k((T)) peuvent être obtenus par cette construction.
Exemples
Les applications suivantes sont des valuations.
Ordre d'annulation d'un polynôme
Modèle:Article détaillé Soient Modèle:Math un corps commutatif, Modèle:Math l'anneau des polynômes à coefficients dans Modèle:Math et Modèle:Math un élément de Modèle:Math. On définit l'application « ordre d'annulation en Modèle:Math »
qui à un polynôme Modèle:Math non nul associe l'ordre de multiplicité de la racine Modèle:Math dans Modèle:Math (ordre qui vaut 0 si Modèle:Math n'est pas racine, et l'infini si Modèle:Math est nul).
Si Modèle:Math est non nul, Modèle:Math est égal au degré du plus petit monôme non nul de Modèle:Math.
Note : Si Modèle:Math appartient à une extension L de K (par exemple à la clôture algébrique de K), la valuation Modèle:Math sur L[X] se restreint en une valuation sur K[X].
Ordre d'annulation d'une fraction rationnelle
Soient Modèle:Math un corps commutatif, Modèle:Math le corps des fractions rationnelles à coefficients dans Modèle:Math et Modèle:Math un élément de Modèle:Math. On définit l'application
qui à une fraction rationnelle associe la différence des ordres d'annulation du numérateur et du dénominateur en Modèle:Math. Si Modèle:Math est positif, il s'agit de l'ordre d'annulation de Modèle:Math en Modèle:Math, si Modèle:Math est strictement négatif, il s'agit de l'ordre du pôle de Modèle:Math en Modèle:Math.
Opposé du degré d'un polynôme
Soient Modèle:Math un corps commutatif et Modèle:Math l'anneau des polynômes à coefficients dans Modèle:Math. On définit l'application
qui à un polynôme Modèle:Math associe l'opposé de son degré, avec la convention que le degré du polynôme nul est Modèle:Math.
Ordre d'une série de Laurent
Sur le corps k((T)) des séries formelles de Laurent sur un corps commutatif k, on a une valuation en associant à toute série de Laurent son ordre.
Ordre d'une fonction méromorphe
Si U est un ouvert connexe non vide du corps des nombres complexes et si a est un point de U, on a une valuation sur le corps des fonctions méromorphes sur U en associant à toute fonction méromorphe son ordre au point a.
Valuation p-adique
Modèle:Article détaillé Pour Modèle:Math un nombre premier, on définit l'application
qui à un entier Modèle:Math associe l'exposant de Modèle:Math dans la décomposition de Modèle:Math en facteurs premiers, avec la convention Modèle:Math. L'application Modèle:Math est appelée valuation [[nombre p-adique|Modèle:Math-adique]] sur ℤ et se prolonge sur le corps des fractions ℚ. Cette valuation définit la valeur absolue p-adique, pour laquelle le complété de ℚ est le corps ℚModèle:Ind des [[nombre p-adique|nombres Modèle:Math-adiques]].
Anneau de valuation
Soit K un corps commutatif muni d'une valuation v. Les éléments de K de valuation positive ou nulle constituent un sous-anneau R appelé l'anneau de valuation associé à la valuation v sur K :
Le corps des fractions de R est K.
On a v(1/x) = –v(x) pour tout élément non nul x de K, et donc x est un élément inversible de R si et seulement si v(x) = 0. Par conséquent, R est un anneau local dont l'unique idéal maximal M est constitué des éléments de valuation strictement positive :
Par exemple (pour les valuations usuelles sur ces corps) l'anneau de valuation de ℚModèle:Ind est ℤModèle:Ind et celui de k((T)) (où k désigne un corps commutatif) est k[[T]]. Ces deux exemples sont de plus des anneaux de valuation discrète.
Il existe diverses caractérisations des anneaux de valuation[1] : Modèle:Énoncé
De la propriété 3, on déduit que tout idéal de type fini est principal (car tous les éléments de l'anneau sont préordonnés par la relation de divisibilité), donc un anneau de valuation est un anneau de Bézout. Par conséquent, tout anneau de valuation noethérien est principal.
Deux valuations v et v' sur K sont équivalentes si et seulement si elles ont le même anneau de valuation[2].
Pour tout corps k et tout groupe abélien totalement ordonné G, il existe un corps valué (K, v) dont le groupe des ordres est G et dont le corps résiduel R/M est k[3].
Notes et références
Articles connexes
- Lemme LTE donnant la valuation p-adique de .